
PATROL® Script Language
Reference Manual

Volume 1—PSL Essentials

Version 3.5

August 8, 2002

Copyright 1994-2002 BMC Software, Inc., as an unpublished work. All rights reserved.

BMC Software, the BMC Software logos, and all other BMC Software product or service names are registered
trademarks or trademarks of BMC Software, Inc. All other registered trademarks or trademarks belong to their
respective companies.

THE USE AND CONTENTS OF THIS DOCUMENTATION ARE GOVERNED BY THE SOFTWARE
LICENSE AGREEMENT ENCLOSED AT THE BACK OF THIS DOCUMENTATION.

Restricted Rights Legend
U.S. GOVERNMENT RESTRICTED RIGHTS. UNPUBLISHED–RIGHTS RESERVED UNDER THE
COPYRIGHT LAWS OF THE UNITED STATES. Use, duplication, or disclosure by the U.S. Government is
subject to restrictions set forth in FAR Section 52.227-14 Alt. III (g)(3), FAR Section 52.227-19, DFARS
252.227-7014 (b), or DFARS 227.7202, as amended from time to time. Contractor/Manufacturer is BMC
Software, Inc., 2101 CityWest Blvd., Houston, TX 77042-2827, USA. Any contract notices should be sent to this
address.
Contacting BMC Software

You can access the BMC Software Web site at http://www.bmc.com. From this Web site, you can obtain
information about the company, its products, corporate offices, special events, and career opportunities.

United States and Canada Outside United States and Canada

Address BMC Software, Inc.
2101 CityWest Blvd.
Houston TX 77042-2827

Telephone

Fax

(01) 713 918 8800

(01) 713 918 8000

Telephone 713 918 8800 or
800 841 2031

Fax 713 918 8000

http://www.bmc.com

Customer Support
You can obtain technical support by using the Support page on the BMC Software Web site or by contacting
Customer Support by telephone or e-mail. To expedite your inquiry, please see “Before Contacting BMC
Software.”

Support Web Site

You can obtain technical support from BMC Software 24 hours a day, 7 days a week at
http://www.bmc.com/support.html. From this Web site, you can

• read overviews about support services and programs that BMC Software offers
• find the most current information about BMC Software products
• search a database for problems similar to yours and possible solutions
• order or download product documentation
• report a problem or ask a question
• subscribe to receive e-mail notices when new product versions are released
• find worldwide BMC Software support center locations and contact information, including e-mail addresses,

fax numbers, and telephone numbers

Support by Telephone or E-mail

In the United States and Canada, if you need technical support and do not have access to the Web, call
800 537 1813. Outside the United States and Canada, please contact your local support center for assistance. To
find telephone and e-mail contact information for the BMC Software support center that services your location,
refer to the Contact Customer Support section of the Support page on the BMC Software Web site at
www.bmc.com/support.html.

Before Contacting BMC Software

Before you contact BMC Software, have the following information available so that Customer Support can begin
working on your problem immediately:

• product information

— product name
— product version (release number)
— license number and password (trial or permanent)

• operating system and environment information

— machine type
— operating system type, version, and service pack or other maintenance level such as PUT or PTF
— system hardware configuration
— serial numbers
— related software (database, application, and communication) including type, version, and service pack or

maintenance level
BMC Software, Inc., Confidential and Proprietary Information

iii

http://www.bmc.com/support.html

• sequence of events leading to the problem

• commands and options that you used

• messages received (and the time and date that you received them)

— product error messages
— messages from the operating system, such as file system full
— messages from related software
BMC Software, Inc., Confidential and Proprietary Information

iv PATROL Script Language Reference Manual Volume 1—PSL Essentials

Contents
Contents

About This Manual xiii

Chapter 1 PATROL Script Language (PSL) Overview
What Is PSL . 1-2

Interpreted PSL Scripts . 1-2
Compiled PSL Binary Files . 1-2
Optimization . 1-2
Diagnostics . 1-3

PSL Built-in Functions . 1-3
Locking Functions for Concurrency Control 1-4
Set Functions for PSL Lists . 1-4
PSL Mathematical Functions . 1-5

PSL Libraries . 1-6
PSL Process Synchronization . 1-7
PSL Shared Global Channels . 1-7

Requirement for Shared Global Channels in PSL 1-7
Implementation of PSL Shared Global Channels 1-8
Effect of PSL Shared Global Channel Mechanisms 1-9

How to Use PSL in PATROL . 1-9
Complex Application Discovery . 1-9
Advanced User Commands . 1-10
Efficient Monitoring Parameters . 1-10

How PSL Relates to PATROL Architecture 1-10
Using Built-in or User-Defined Object Variables 1-13
PSL Naming Conventions . 1-13

Chapter 2 PSL Data Types and Operators
PSL Data Types and Objects . 2-2
BMC Software, Inc., Confidential and Proprietary Information

Contents v

Numeric Constants .2-2
PSL Variables .2-3
Default Initialization of PSL Variables .2-3
PSL Predefined Constants .2-4
PSL String Literals .2-5
PSL Here Documents .2-6
ActiveX Scripts .2-7
PSL Lists .2-8
PSL Simple Statements .2-8

PSL Operators .2-9
Arithmetic Operators .2-9
Assignment Operators .2-10
Increment/Decrement Operators .2-11
Bitwise Operators .2-11
Logical Operators .2-11
Relational Operators .2-12
Shift Operators .2-13
String Operators .2-13
Ternary Operator .2-14
PSL Operator Precedence and Associativity2-15

Chapter 3 PSL Statements
Introduction .3-2
PSL Compound Statements .3-2
do...until .3-4
exit .3-6
export .3-7
for .3-9
foreach .3-11
function .3-13

return Statement .3-14
Functions with Variable Length Argument Lists3-15
Defining Local Variables .3-16
Entry Point Function .3-17
Start of Execution Without an Entry Point Function3-18
Backward Compatibility with Earlier PSL Versions3-19
Limitations of User-Defined Functions .3-19

if .3-21
last .3-23
next .3-24
BMC Software, Inc., Confidential and Proprietary Information

vi PATROL Script Language Reference Manual Volume 1—PSL Essentials

requires . 3-25
switch . 3-28
while . 3-33

Chapter 4 PSL External Commands
%DUMP—List Specific Information . 4-2
%DUMP CHANNELS—List PSL Global Channels 4-3
%DUMP LIBRARIES—List Loaded PSL Libraries 4-4
%PSL—Execute a PSL Statement . 4-6
%PSLPS—List Current PSL Processes . 4-7
psl—PSL Compiler Command . 4-8

Chapter 5 Diagnosing PSL Program Errors
PslDebug—Run-Time Error Checking Variable 5-2
errno—Error Return Code Variable . 5-6
exit_status—System Return Code Variable . 5-7
Incompatibilities with the C Programming Language 5-7

Operators && and || . 5-7
Prefix and Postfix Operators ++ and -- . 5-8
Break and Continue Statements . 5-8

Common PSL Coding Errors . 5-8
Character Strings Interpreted as Numbers 5-9
Floating Point Numbers Interpreted as Character Strings 5-10
Character Strings Interpreted as Variable Names 5-10
PSL Functions That Do Not Modify Their Arguments 5-11
Functions That Do Not Write to the Console Window 5-12

PSL Compiler Warnings . 5-12
Built-in Function Run-Time Error Messages 5-15

Chapter 6 Internationalized PSL Scripts
Introduction . 6-2

Locale and Codeset . 6-2
Locale Categories . 6-3
set_locale() . 6-4
CTYPE Locale Category . 6-5
MESSAGES Locale Category . 6-5
CODECVT Locale Category . 6-6
TIME Locale Category . 6-7
Multiple-Byte Characters . 6-7

PSL International Functions . 6-7
BMC Software, Inc., Confidential and Proprietary Information

Contents vii

ID-Based Messaging Functions .6-8
Other PSL Functions .6-9

Command Execution Functions .6-9
Input and Output Functions .6-10
File Handling Functions .6-11
String Functions .6-11
Set Functions .6-12
Date and Time .6-12

Compatibility with Noninternationalized PATROL Agents6-13
Example Code: Verify the Version of the PATROL Agent 6-13
Example Code: Conditionally Use an International Function . . .6-15

Appendix A errno Return Values

Appendix B Built-in Agent Namespace Variables
Computer Class Built-in Variables . B-2
Application Class Built-in Variables . B-3
Application Instance Built-in Variables . B-4
Parameter Built-in Variables . B-5

Appendix C Additional PSL Tools
PSL Profiler Tool . C-2

How to Install the PSL Profiler . C-4
How to Start the PSL Profiler . C-4
PSL Profiler PSL Functions . C-5
About the PSL Profile Viewer (ppv) Tool C-8
About the PSL Profiler API . C-8

PSL Optimizer Tool . C-10
Introduction to the PSL Optimizer . C-10
How to Install the PSL Optimizer . C-10
How to Deactivate the PSL Optimizer C-11
About the PSL Optimizer . C-11
Optimization Levels . C-11
Optimization Criteria . C-14
Command-Line Specified Options . C-16

Index
BMC Software, Inc., Confidential and Proprietary Information

viii PATROL Script Language Reference Manual Volume 1—PSL Essentials

Figures
Figures

Figure 1-1 Tree Structure of PATROL Applications and Objects 1-11
BMC Software, Inc., Confidential and Proprietary Information

Figures ix

BMC Software, Inc., Confidential and Proprietary Information

x PATROL Script Language Reference Manual Volume 1—PSL Essentials

Tables
Tables

Table 1-1 Recommended Naming Conventions for PATROL Objects . 1-14
Table 2-1 Examples of PSL Data Types. 2-2
Table 2-2 PSL Predefined Constants . 2-4
Table 2-3 PSL String Literals. 2-6
Table 2-4 PSL Arithmetic Operators . 2-9
Table 2-5 PSL Assignment Operators . 2-10
Table 2-6 PSL Increment/Decrement Operators 2-11
Table 2-7 PSL Bitwise Operators. 2-11
Table 2-8 PSL Logical Operators. 2-12
Table 2-9 PSL Relational Operators . 2-12
Table 2-10 PSL Shift Operators . 2-13
Table 2-11 PSL Operator Precedence and Associativity 2-15
Table 5-1 PslDebug Error Checking Flag Bits. 5-3
Table 6-1 Supported Locale Names . 6-2
Table 6-2 PSL Locale Categories. 6-4
Table 6-3 PSL International Functions . 6-8
Table 6-4 International Features of Command Execution Functions. . . 6-10
Table 6-5 International Features of Input and Output Functions 6-10
Table 6-6 International Features of File Handling Functions 6-11
Table 6-7 International Features of String Functions. 6-11
Table 6-8 International Features of Set Functions 6-12
Table 6-9 International Features of Date and Time Functions. 6-12
Table A-1 PSL errno Values . A-1
Table B-1 Computer Class Built-in Variables. B-2
Table B-2 Application Class Built-in Variables B-3
Table B-3 Application Instance Built-in Variables B-4
Table B-4 Parameter Built-in Variables . B-5
BMC Software, Inc., Confidential and Proprietary Information

Tables xi

BMC Software, Inc., Confidential and Proprietary Information

xii PATROL Script Language Reference Manual Volume 1—PSL Essentials

About . . .
About This Manual

This book introduces the PATROL® Script Language (PSL), a
comprehensive language for writing complex application discovery
procedures, parameters, and commands within the PATROL monitoring
environment. The book you are reading, PATROL Script Language
Reference Manual Volume 1—PSL Essentials, is the first volume of the
PSL documentation, and it presents the basics of PSL development.

Terms of Usage

The recipient of this document acknowledges and agrees that the PATROL
Script Language (PSL) is proprietary and confidential to BMC Software, Inc., is
only for the internal use of the intended recipient, and is only for use as
described herein. The recipient further agrees that this document shall not be
copied, disclosed, or transferred to any third party without the prior, express,
written consent of BMC Software. Any use of this documentation or the
PATROL software product constitutes acceptance of these terms. If these
terms are not acceptable, promptly return this documentation or the PATROL
software product to BMC Software.
BMC Software, Inc., Confidential and Proprietary Information

About This Manual xiii

Who Should Read This Book

The PATROL Script Language Reference Manual is intended for
advanced users of PATROL who need to customize and extend the
PATROL® Console and Knowledge Module™ (KM) monitoring
environment. It assumes you are familiar with a third- or
fourth-generation programming language such as C, Perl, TCL, or a Unix
programming shell. This volume presents information about PSL basics
such as statement syntax and data types. If you need information about
the built-in functions, refer to the PATROL Script Language Reference
Manual Volume 2—PSL Functions.

How This Manual Is Organized

The PATROL Script Language Reference Manual Volume 1—PSL
Essentials is organized into the following chapters.

Chapter Title Purpose

1 "PATROL Script
Language (PSL)
Overview"

Introduces the PATROL Script Language
(PSL), briefly explaining what PSL is and
how it works.

2 "PSL Data Types
and Operators"

Identifies the available PSL data types,
constants, and operators.

3 "PSL
Statements"

Describes the statements inherent in PSL.
These statements include
• do...until, if, for, foreach, and while for

basic program loops
• function for defining user-defined

functions
• requires and export for importing and

exporting PSL libraries into a program

4 "PSL External
Commands"

Describes commands that you enter from
the operating system command line,
including commands for the PSL compiler,
the one-line PSL function entry, and the PSL
process list.
BMC Software, Inc., Confidential and Proprietary Information

xiv PATROL Script Language Reference Manual Volume 1—PSL Essentials

Related Documentation
BMC Software products offer several types of documentation:

• online and printed books
• online Help
• release notes

5 "Diagnosing PSL
Program Errors"

Provides help in diagnosing PSL errors
through debugging aids and error messages.
This chapter describes:
• PslDebug, errno, and exit_status variables
• incompatibilities with the C programming

language
• common coding errors
• compiler warnings
• built-in function run-time error messages

6 "Internationalized
PSL Scripts"

Shows how to write internationalized PSL
scripts, which have the following
characteristics:
• Run on two or more computer platforms of

different languages.
• Read and write multilingual characters and

formats such as date, time, and currency.
• Exchange information between computer

platforms of different languages.

A "errno Return
Values"

Lists the error codes that are returned by the
PSL built-in functions.

B "Built-in Agent
Namespace
Variables"

The built-in Agent namespace variables
maintained by the PATROL Agent are
presented here in table format. You can use
these variables to customize existing
commands and parameters.

C "Additional PSL
Tools"

Describes additional PSL tools that can be
used when developing PSL scripts.

Chapter Title Purpose
BMC Software, Inc., Confidential and Proprietary Information

About This Manual xv

Online and Printed Books

The books that accompany BMC Software products are available in
online format and printed format. You can view online books with
Acrobat Reader from Adobe Systems. The reader is provided at no cost,
as explained in “To Access Online Books.” You can also obtain
additional printed books from BMC Software, as explained in “To
Request Additional Printed Books.”

To Access Online Books

Online books are formatted as Portable Document Format (PDF) files.
You can view them, print them, or copy them to your computer by using
Acrobat Reader 3.0 or later.You can access online books from the
documentation compact disc (CD) that accompanies your product or
from the World Wide Web.

In some cases, installation of Acrobat Reader and downloading the online
books is an optional part of the product-installation process. For
information about downloading the free reader from the Web, go to the
Adobe Systems site at http://www.adobe.com.

To view any online book that BMC Software offers, visit the support
page of the BMC Software Web site at http://www.bmc.com/support.html.
Log on and select a product to access the related documentation. (To log
on, first-time users can request a user name and password by registering
at the support page or by contacting a BMC Software sales
representative.)

To Request Additional Printed Books

BMC Software provides a core set of printed books with your product
order. To request additional books, go to
http://www.bmc.com/support.html.
BMC Software, Inc., Confidential and Proprietary Information

xvi PATROL Script Language Reference Manual Volume 1—PSL Essentials

http://www.adobe.com
http://www.bmc.com/support.html
http://www.bmc.com/support.html

Online Help

You can access Help for a product through the product’s Help menu. The
online Help provides information about the product’s graphical user
interface (GUI) and provides instructions for completing tasks.

Release Notes

Printed release notes accompany each BMC Software product. Release
notes provide up-to-date information such as

• updates to the installation instructions
• last-minute product information

The latest versions of the release notes are also available on the Web at
http://www.bmc.com/support.

Conventions

This PATROL Script Language Reference Manual uses several format
and font conventions to make it more usable and to make it more
compatible with other computer programming language reference
manuals. The following conventions are used in this book:
BMC Software, Inc., Confidential and Proprietary Information

About This Manual xvii

http://www.bmc.com/support

• This book includes special elements called notes, warnings,
examples, and tips:

Note
Notes provide additional information about the current subject.

Warning
Warnings alert you to situations that can cause problems, such as loss of
data, if you do not follow instructions carefully.

Example
An example clarifies a concept discussed in text.

Tip
A tip provides useful information that may improve product performance
or make procedures easier to follow.

• All syntax, operating system terms, and
literal examples are presented in this
typeface.

• In instructions, boldface type highlights information that you enter.
File names, directories, and Web addresses also appear in boldface
type.

• The symbol => connects items in a menu sequence. For example,
Actions => Create Test instructs you to choose the Create Test
command from the Actions menu.

• The symbol » denotes one-step instructions.
BMC Software, Inc., Confidential and Proprietary Information

xviii PATROL Script Language Reference Manual Volume 1—PSL Essentials

• Path names, or system messages, italic text represents a variable, as
shown in the following examples:

The table table_name is not available.

system/instance/file_name

• A vertical bar (|) separating items indicates that you must choose
one item. In the following example, you would choose a, b, or c:

a | b | c

• An ellipsis (...) indicates that you can repeat the preceding item or
items as many times as necessary. The PSL statement and built-in
function descriptions use ellipses (...) to indicate parameters that may
be indefinitely replicated within the statement or function. For
example, the following function format indicates that variable can be
specified an arbitrary number of times within the snmp_get()
function:

snmp_get(session,variable1,[...,variablen])

The following statement format indicates that the construction case
n: {BLOCK} can be repeated within the statement an arbitrary
number of times.

switch (variable)
{

case a: {BLOCK}
case b: {BLOCK}
. . .
case n: {BLOCK}
default: {BLOCK}

}

• Square brackets ([]) around an item indicate that the item is
optional.
BMC Software, Inc., Confidential and Proprietary Information

About This Manual xix

Statement and Built-in Function Descriptions

The PSL statement and built-in function descriptions in Chapters 3 and 4
use standard programming language reference formatting. That format
consists of the following conventions:

• statement or function title and an optional single-sentence
description

• a detailed format and parameter description
• a detailed description of statement or function action, restrictions,

dependencies, and error conditions
• statement or built-in function descriptions begin a new page

Mouse Controls

The following table shows equivalent mouse buttons for Unix users and
Windows users:
BMC Software, Inc., Confidential and Proprietary Information

xx PATROL Script Language Reference Manual Volume 1—PSL Essentials

Note
If you have a one-button mouse (such as an Apple Macintosh mouse),
assign MB1 to that button. Also define a user-selectable combination of
option and arrow keys to simulate MB2 and MB3. For details, refer to
the documentation for your emulation software.

Unix Button Windows Button Description

MB1 left mouse button Click this button on an icon or menu
command to select that icon or
command. Click MB1 on a command
button to initiate action. Double-click
an icon to open its container.

MB2 not applicable Click this button on an icon to display
the InfoBox for the icon. To simulate
MB2 on a two-button mouse,
simultaneously press the two buttons
(MB1 and MB3).

MB3 right mouse button Click this button on an icon to display
its pop-up menu.
BMC Software, Inc., Confidential and Proprietary Information

About This Manual xxi

BMC Software, Inc., Confidential and Proprietary Information

xxii PATROL Script Language Reference Manual Volume 1—PSL Essentials

1

1
1

PATROL Script Language (PSL)
Overview 1

This chapter provides an overview of PSL. The following topics are
discussed:

What Is PSL . 1-2
Interpreted PSL Scripts . 1-2
Compiled PSL Binary Files . 1-2
Optimization . 1-2
Diagnostics. 1-3

PSL Built-in Functions . 1-3
Locking Functions for Concurrency Control 1-4
Set Functions for PSL Lists . 1-4
PSL Mathematical Functions. 1-5

PSL Libraries . 1-6
PSL Process Synchronization. 1-7
PSL Shared Global Channels . 1-7

Requirement for Shared Global Channels in PSL 1-7
Implementation of PSL Shared Global Channels 1-8
Effect of PSL Shared Global Channel Mechanisms 1-9

How to Use PSL in PATROL . 1-9
Complex Application Discovery . 1-9
Advanced User Commands . 1-10
Efficient Monitoring Parameters . 1-10

How PSL Relates to PATROL Architecture . 1-10
Using Built-in or User-Defined Object Variables. 1-13
PSL Naming Conventions . 1-13
BMC Software, Inc., Confidential and Proprietary Information

PATROL Script Language (PSL) Overview 1-1

What Is PSL
PSL is both an interpreted and a compiled language for writing complex
application discovery procedures, parameters, and commands within the
PATROL environment. It is also a good language for writing arbitrary
commands and tasks.

PSL has been designed to provide functions needed to efficiently develop
Knowledge Modules for the PATROL environment. To accomplish this,
PSL sacrifices some of the completeness of languages such as C, csh,
Perl, or awk, while implementing some of the statements and functions
that make those languages so powerful and popular. Users familiar with
one of those languages should have little difficulty adapting to PSL.

Interpreted PSL Scripts

Upon receiving a script, PSL compiles the whole script into an internal
form. If the script is syntactically correct, the internal form is then
interpreted. Upon reexecution, the script is not recompiled.

Compiled PSL Binary Files

PSL includes a standalone compiler to compile PSL scripts and create
executable PSL binaries outside the PATROL® Agent. There is also an
external interpreter that simulates all aspects of PSL execution except
those areas specific to the PATROL Agent. See “psl—PSL Compiler
Command” on page 4-8 for more information on compiling PSL scripts.

Optimization

Like C, PSL does a certain amount of expression evaluation at compile
time, whenever it determines that all of the arguments to an operator are
static and have no side effects.
BMC Software, Inc., Confidential and Proprietary Information

1-2 PATROL Script Language Reference Manual Volume 1—PSL Essentials

In particular, string concatenation is done at compile time between string
literals. Backslash interpretation is also done at compile time. For
example, the following expression is reduced to one string internally at
compile time:

“Now is the time for all” .“\n” .
“good men to come to.”

PSL is also highly efficient. The language is not immediately interpreted,
but instead is compiled into an internal form, which is then executed by a
high-speed interpreter.

Diagnostics

If any compilation errors are encountered when a PSL script is compiled,
error messages tell you the line number of the error and briefly describe
the cause of the error. See Chapter 4, “PSL External Commands,” for
more information.

PSL Built-in Functions

PSL includes a number of built-in functions that provide
PATROL-specific actions such as creating and manipulating PATROL
objects and general-purpose functions such as mathematical, logical, and
I/O functions. The functions are individually described in the PATROL
Script Language Reference Manual Volume 2—PSL Functions. The
following sections summarize the PSL built-in functions.
BMC Software, Inc., Confidential and Proprietary Information

PATROL Script Language (PSL) Overview 1-3

Locking Functions for Concurrency Control

PSL includes the lock() and unlock() built-in functions for enforcing
concurrency control. These functions are typically used to linearize
accesses by different PSL parameters, commands, and processes to
shared data structures. These shared data structures include the object
hierarchy accessed by the PSL set() and get() functions and external
resources such as files.

All PSL processes attempting to linearize accesses to a resource must
cooperate by requesting locks of a given lock name. All resource
accesses, including the set() and get() functions, are denied shared resource
access without a lock. It is the responsibility of each PSL process to
access a resource only when it holds the required lock.

Set Functions for PSL Lists

PSL includes the following functions for performing set operations on
PSL lists:

• difference()–returns the list of different elements between lists
• intersection()–returns a list of elements common between lists
• sort()–returns a list in ascending or descending element order
• subset()–verifies that one list is contained within another
• union()–returns a list that is a combination of lists
• unique()–returns a list of elements that appears in only one list

These functions process PSL lists as sets of elements. Each member of a
list is text string that ends with a new-line character. (The text string
cannot contain embedded new-line characters.) Although the set
functions will properly handle lists whose last element does not end with
a new-line character, BMC Software recommends that you ensure that all
elements, including the last element, are followed by a new-line
character.

The NULL set [""] is the equivalent of the null or empty set (φ) in set
theory. The NULL set is treated by the PSL set functions as a proper set
that contains no elements.
BMC Software, Inc., Confidential and Proprietary Information

1-4 PATROL Script Language Reference Manual Volume 1—PSL Essentials

The NULL string [] is a PSL list element with no characters. The PSL
set functions allow lists to contain NULL strings, but BMC Software
discourages their use because their unique characteristics can produce
unexpected results.

The PSL concept of a set is not the unique list of ascending or
descending elements familiar to set theory. In many cases, the PSL lists
contain duplicate elements arranged in no particular order. A PSL list can
be transformed into an ordered set using the unique() function to remove
duplicates and the sort() function to arrange the elements in ascending or
descending order.

PSL Mathematical Functions

PSL supports a basic subset of mathematical functions. These functions
are all based on the standard C mathematical functions and include the
peculiarities those functions display in the standard C libraries on any
given platform.

Note
Although most issues involving the C mathematical functions are
standardized, there are platform-specific differences such as levels of
accuracy; the different handling of various out-of-range conditions may
cause them to behave differently on different platforms.

All PSL functions except one have the same name as the corresponding
C function. The exception is that the loge() function corresponds to C’s
log() function because PSL already has a log() function used for logging
events. The PSL log() function has been augmented to return a run-time
error when it receives a numeric value. This error message reduces the
likelihood of accidentally calling it when the loge() function is intended.

Note
The log() function has been replaced by the event_trigger() function, but the
log() function is still supported for backward compatibility.
BMC Software, Inc., Confidential and Proprietary Information

PATROL Script Language (PSL) Overview 1-5

The PSL mathematical functions include some run-time error checking
for range and domain. Both conditions result in a run-time error message
that sets the PSL errno variable to an appropriate value.

Additionally, any nonnumeric values produced by printing the result of
the function call, such as Nan or -Inf, are converted to 0.0 to prevent
the return value from being interpreted by PSL as a nonnumeric character
string. A PSL function also returns a run-time error message when it
performs the conversion.

Note that some PSL domain errors may not exactly match those of the
standard C library:

• The PSL functions and argument ranges raise a domain error and
return zero.

• The C functions may raise a range error and/or return a nonnumeric
representation of the result such as infinity in the following cases:

— loge(x) and log10(x) when x ≤ 0
— sqrt(x) when x < 0
— fmod(x,0)

PSL Libraries

PSL supports shared libraries of PSL user-defined functions. PSL
libraries are binary files that can be loaded into another PSL program
using the PSL requires statement. The PSL libraries can be loaded
using the following methods:

• statically—mixing the library object code and symbol table into the
PSL program to create a larger binary

• dynamically—requesting at PSL program startup that the
PatrolAgent find the required library in its repository of libraries (that
is, probably in the Knowledge Module or in the directory specified
by the PATROL_HOME or HOME environment variable)
BMC Software, Inc., Confidential and Proprietary Information

1-6 PATROL Script Language Reference Manual Volume 1—PSL Essentials

If the PATROL Agent cannot find the library, the program execution fails.

If the PATROL Agent finds the library, it dynamically loads it as a shared
library. Shared libraries are loaded only once by the PATROL Agent; all
PSL processes using that library (with dynamic loading) share the library
object code and constants but have their own copy of library variables.

PSL Process Synchronization

PSL provides process synchronization within PSL processes of a single
PATROL Agent through condition variable primitives used with PSL
locks. These primitives are similar to constructs provided for
multi-threaded programming in the C programming language on many
non-threading operating systems.

PSL Shared Global Channels

PSL supports the use of shared global channels for communication
between a process and another process or file.

Requirement for Shared Global Channels in PSL

In previous versions of PSL, channels were restricted to a single PSL
process. Restricting a channel to a single process meant that each PSL
process that wished to communicate with, or query to, an external
process such as a database had to open its own channel. Opening a new
channel for each caller heavily increased resource usage.

Another problem with the previous channel mechanism was that there
was no way for one PSL process to open the channel and another PSL
process to use it. The usual workaround was to do everything in one
collector parameter that performed all queries and set the consumer
parameter values. That method had the following limitations:
BMC Software, Inc., Confidential and Proprietary Information

PATROL Script Language (PSL) Overview 1-7

• no way to have distinct poll times for the various consumers
• no convenient way to deactivate queries that were deemed

unnecessary

All the agent scheduling features were lost unless the Knowledge
Module developer could explicitly code the equivalent functionality into
the collector’s PSL code.

Implementation of PSL Shared Global Channels

The current version of PSL allows one PSL parameter to open a channel
to an external process in an explicitly shared mode, which allows any
number of other PSL processes to send data to, and receive data from, the
channel.

The ability to share channels also requires PSL to provide a mechanism
for concurrent programming techniques. PSL provides these in the form
of external synchronization primitives.

The primitives are preferable to building concurrency into the channel
opening, reading, writing, and closing functions. For example, having
each PSL process lock a shared channel explicitly prevents concurrent
reading by one process and writing by another. In addition, having the
synchronization primitives separate from channels allows them to be
used to synchronize the use of any shared resource such as the agent’s
internal symbol table or an external file.

The current implementation of the read(), readln(), and write() functions for
shared channels will fail immediately (without blocking) if another PSL
process is already blocked on the channel. The Knowledge Module
developer must use PSL locks and/or PSL condition variables to enforce
the desired synchronization of the use of shared channels.
BMC Software, Inc., Confidential and Proprietary Information

1-8 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Effect of PSL Shared Global Channel Mechanisms

The PSL functions ensure that all operations on a channel are serialized,
with all PSL function calls appearing to be atomic. The PSL programmer
can be assured that file channel reads and writes in different processes
will take place atomically. The locks provided in PSL prevent
unpredictable interleaving of sequences of PSL read and write calls to the
channel.

The single exception to serialization on channels created using the popen()
function is the allowance for a concurrent read and write operation. A
read can occur when a write is pending on the channel, and a write can
occur when a read is blocked or pending on the channel—thus, both a
reader and a writer PSL process can be blocked on a shared channel.

File channels opened using the fopen() function can never cause a PSL
read() or write() function to block. To enforce serialization, the second
reader process cannot be blocked, nor can the second writer process be
blocked; hence, the second PSL read(), readln(), and write() functions on a
file channel will fail.

How to Use PSL in PATROL
Knowledge Module developers and sophisticated users use PSL to extend
the PATROL management environment. The PSL scripts that you create
are sent to the appropriate PatrolAgents where they are stored and
utilized.

The following topics briefly describe typical uses for PSL scripts.

Complex Application Discovery

You could write a PSL script (called a discovery script) to identify all
available printers and their status. The PSL script could then cause
appropriate icons to be displayed by the PATROL Console.
BMC Software, Inc., Confidential and Proprietary Information

PATROL Script Language (PSL) Overview 1-9

Typical PSL discovery scripts include RDBMS discovery, file system
discovery, and so on.

Advanced User Commands

PATROL provides menus for all managed objects. PSL can be used to
allow the stored commands on these menus to perform complex tasks.
For example, a typical PSL command on a computer icon would produce
a report on “CPU hogs” or allow the administrator to add a user.

Efficient Monitoring Parameters

PSL parameters can analyze and manipulate host information generating
a minimum of extra processes on the managed computer.

For example, you can use a PSL parameter to run a command such as the
Unix sar command, which returns a multitude of data; then break this
data down into many different values, which can be passed on to other
parameters to be displayed. The parameter that gathers the data is called
a collector, and the parameters that display the values are called
consumers.

By using a collector parameter to run the sar command just once, collect
its output, and then pass the many values to the various consumer
parameters, you can avoid executing the sar command numerous times
to get each parameter value, thereby conserving valuable operating
system resources.

How PSL Relates to PATROL Architecture

Managing objects in the PATROL environment requires an understanding
of the naming conventions PATROL uses for objects, instances,
parameters, and variables. See “PSL Naming Conventions” on page 1-13.
You can access objects using their absolute name or their name relative to
the PSL programming context.
BMC Software, Inc., Confidential and Proprietary Information

1-10 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Figure 1-1 shows how application objects can have variables and
instances. In turn, the application instances can have variables and
parameters, which in turn can have variables.

Figure 1-1 Tree Structure of PATROL Applications and Objects

As shown in Figure 1-1, the root of the hierarchy is the computer. The
computer (root) directory contains the applications. Each application
directory contains all the application instances. Each instance directory
contains all the parameters for each instance and so on.

The designation /RDB/Dev refers to the RDB database named Dev.
Variables (such as “name”) are analogous to files within a directory. The
status of this database instance would be referenced as /RDB/Dev/status.

computer

Instance

Parameter

ParameterAPPLICATION

name

name

name

name

name

ipAddress

value

status

status

status

instance

numinstances

value
BMC Software, Inc., Confidential and Proprietary Information

PATROL Script Language (PSL) Overview 1-11

Conceivably, status could be the name of a parameter on Dev, in which
case a conflict would exist. It is recommended that you begin all variable
names with a lowercase letter and all object names (parameters,
applications, etc.) with an uppercase letter to avoid name conflicts.

Note
Refer to “PSL Naming Conventions” on page 1-13 for more information
on developing Knowledge Modules which conform to PSL style
guidelines.

The designation /RDB/Dev/Status is an object (a parameter) because
it begins with a capital letter and /RDB/Dev/status is a variable for
the Dev instance of the RDB application.

The value of the parameter Logons on database Dev would be referenced
as /RDB/Dev/Logons/value.

Once you define an object, you do not normally have to give the absolute
name each time you reference it. You can make use of the context in
which the script you are developing will run to construct shorter, relative
names for most objects.

The context of a script is the name of the object to which the executing
script belongs. For example, if you write a script for the discovery of the
RDB application, its context will be the application class it is
discovering.

Whenever you give the name of an object without a preceding “/”, the
PatrolAgent prefixes the name with the current context. Using the
previous example, if we gave the object name Dev, it would be expanded
to /RDB/Dev automatically.

The reference “..” is reserved to mean the parent of the current context.
For example, the reference “../name” in an application discovery script
refers to the name of the computer since the computer is the parent object
of all application class objects. In a parameter, it refers to the application
instance name since the parent of a parameter is its application instance.
BMC Software, Inc., Confidential and Proprietary Information

1-12 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Using Built-in or User-Defined Object Variables
All objects—computers, applications, classes, application instances,
parameters—have variables. Variables can be either built-in (defined
automatically by PATROL when the object is created) or defined by the
user.

Built-in variables are used by PATROL to record information, such as the
name and status of an object. The values of some built-in variables are
static, whereas others are updated dynamically by the PatrolAgent. Most
built-in variables cannot be modified—that is, they are read-only—but
some can be changed by the user to control the behavior of the
PatrolAgent.

For example, the objectID built-in variable (the unique internal object id)
is read-only, whereas the value built-in variable (the value of a
parameter) is read-write.

A user script can change the label of the instance’s icon by setting the
value of the name for the application instance variable:

set("/RDB/Dev/name","Development");

PSL Naming Conventions

To make it easier for you to determine whether a particular name
describes an application class, an application instance, a parameter, or a
variable, BMC Software recommends that you follow these naming
conventions for PATROL objects:
BMC Software, Inc., Confidential and Proprietary Information

PATROL Script Language (PSL) Overview 1-13

†Generally, the instance’s name is dictated by the name of the real-life object that it represents, so
following this convention is not always possible, as in /FILESYSTEM/etc.

The object and variable naming conventions are similar to those of the
Unix file system. They are not file names, and you should not be
concerned if they do not conform to the file naming conventions for your
particular operating system.

Warning
While naming objects and variables, avoid using special characters such
as |, *, &, $, and @. The PATROL Agent reserves many special
characters for specific uses. The | symbol, for example, functions as a
code separator, and using it in an object name yields undesirable results.

Table 1-1 Recommended Naming Conventions for PATROL Objects

PATROL
Object Type Convention Example

APPLICATION
CLASS

Use all uppercase letters. /FILESYSTEM
/MYAPP

Application
Instance

Use Initial capitalization.† /MYAPP/Instance1

Parameter Use a few letters of the parameter’s
application class. Initial cap each word in
the name.

/FILESYSTEM/etc/FSInodesPctUsed
/MYAPP/Instance1/MYFirstParam

variable Begin with a lowercase letter. Initial cap
each word in the name after the first word.

/MYAPP/Instance1/numUsers
BMC Software, Inc., Confidential and Proprietary Information

1-14 PATROL Script Language Reference Manual Volume 1—PSL Essentials

2

2
2

PSL Data Types and Operators 2

This chapter provides information on the syntax of PSL. The following
topics are discussed:

PSL Data Types and Objects . 2-2
Numeric Constants. 2-2
PSL Variables. 2-3
Default Initialization of PSL Variables . 2-3
PSL Predefined Constants . 2-4
PSL String Literals. 2-5
PSL Here Documents. 2-6
ActiveX Scripts . 2-7
PSL Lists . 2-8
PSL Simple Statements . 2-8

PSL Operators . 2-9
Arithmetic Operators . 2-9
Assignment Operators . 2-10
Increment/Decrement Operators . 2-11
Bitwise Operators. 2-11
Logical Operators. 2-11
Relational Operators . 2-12
Shift Operators . 2-13
String Operators . 2-13
Ternary Operator . 2-14
PSL Operator Precedence and Associativity 2-15
BMC Software, Inc., Confidential and Proprietary Information

PSL Data Types and Operators 2-1

PSL Data Types and Objects
PSL has four data types: integer, float, string, and list; however, all four
types are represented internally as character strings. Table 2-1 lists the
PSL data types:

Variables and values are interpreted as either strings or numbers,
whichever is appropriate to the context.

 A scalar (integer or float) is interpreted as true in the Boolean sense if it
is not the null string or 0. Booleans returned by operators are 1 for true
and 0 or “” (the null string) for false.

Numeric Constants

Although the internal representation of an integer or floating-point
constant is a string, these constants do not need to appear inside
quotation marks in PSL scripts. Integer and floating-point constants can
be used in the same way as in the C programming language:

x = 3;
pi = 3.14159;

Table 2-1 Examples of PSL Data Types

Data Type Example Representation

integer 3 "3"

float 4.5 "4.5"

string “abc” "abc"

list [1,3,5] "1\n3\n5"

Note: “\n” is the new-line character.
BMC Software, Inc., Confidential and Proprietary Information

2-2 PATROL Script Language Reference Manual Volume 1—PSL Essentials

PSL Variables

Variables of any type can be used as values—that is, they can be assigned
to. As all data types are treated as strings internally, they all share a
common name space. Therefore, you cannot use the same name for a
scalar variable, a string variable, and a list variable.

Case is significant. FOO, Foo, and foo are all different names. Names
must start with a letter or an underscore but can contain digits and
underscores (“_”).

Some identifiers have predefined meanings. Reserved keywords—such as
if and foreach—cannot be used as identifiers. Keywords are recognized as
either all lowercase or all uppercase letters. In addition, the predefined
constants listed in Table 2-2, “PSL Predefined Constants,” on page 2-4
cannot be used as identifiers.

Default Initialization of PSL Variables

PSL does not make use of the concept of “declarations” for variables.
The first appearance of an identifier serves to add it to the list of global
variables for a PSL script. All variables are initialized with a null string
value each time a PSL script is executed. This value does not change
until the variable’s value is defined by some explicit operation, such as
assignment.

This default initialization to the null string allows a variable to be treated
as an initially empty list/string or as a numeric variable with a 0 value
(since arithmetic operators treat the null string as equivalent to 0).
However, reliance on this initial value causes a PSL run-time warning
message at its first use (if run-time warnings are enabled). It is
considered better style to initially assign a value of “” or 0 to a list/string
variable or numeric variable, respectively.

Note
For more information on enabling run-time warnings, see
“PslDebug—Run-Time Error Checking Variable” on page 5-2.
BMC Software, Inc., Confidential and Proprietary Information

PSL Data Types and Operators 2-3

PSL Predefined Constants

A number of identifiers are predefined as constants so that they can be
used without needing declaration. The predefined constants are used as
PSL function parameters, PATROL object states, and for other PSL
processing. These constants are read-only and will not accept user
defined values. Table 2-2 lists the PSL predefined constants:

Table 2-2 PSL Predefined Constants (Part 1 of 2)

Constant Definition

chart() Function Actions

CHART_ADD_GRAPH not currently implemented

CHART_DELETE_GRAPH not currently implemented

CHART_DESTROY destroys a previously loaded chart

CHART_LOAD loads a chart

CHART_PRINT prints a previously loaded chart

PATROL Object States

ALARM PATROL ALARM object state

WARN PATROL WARNING object state

OK PATROL OK object state

OFFLINE PATROL OFFLINE object state

VOID PATROL VOID object state

response() Function Elements

R_CHECK_HORIZ horizontal check box

R_CHECK_VERT vertical check box

R_CLICKER clicker widget

R_COLUMN column compound

R_FRAME frame compound

R_ICON icon

R_LABEL left-justified label

R_LABEL_CENTER centered label

R_LIST_MULTIPLE multiple-select scrolled list with defaults
BMC Software, Inc., Confidential and Proprietary Information

2-4 PATROL Script Language Reference Manual Volume 1—PSL Essentials

PSL String Literals

String literals are delimited by double quotation marks. String literals can
be multiline, causing the new-line characters to become part of the string.

R_LIST_MULTIPLE_ND multiple-select scrolled list without defaults

R_LIST_SINGLE single-select scrolled list with defaults

R_LIST_SINGLE_ND single-select scrolled list without defaults

R_MENU option menu

R_POPUP non scrolled pop-up

R_POPUP_SCROLLED scrolled pop-up

R_RADIO_HORIZ horizontal radio button

R_RADIO_VERT vertical radio button

R_ROW row compound element

R_SCALE_HORIZ horizontal sliding scale

R_SCALE_VERT vertical sliding scale

R_SEP_HORIZ horizontal separator

R_SEP_VERT vertical separator

R_SPINNER time spinner button

R_TEXT_FIELD text entry box without a label

R_TEXT_FIELD_LABEL text entry box with a label

R_TOGGLE toggle button

Other Constants

EOF end-of-file condition constant

true/TRUE/True
yes/YES/Yes

boolean true value (logical 1)

false/FALSE/False
no/NO/No

boolean false value (logical 0)

Table 2-2 PSL Predefined Constants (Part 2 of 2)

Constant Definition
BMC Software, Inc., Confidential and Proprietary Information

PSL Data Types and Operators 2-5

The backslash rules apply for escaping characters (such as the backslash
or the quotation mark) and for making characters such as new-line or tab.
Table 2-3 list the string literals currently supported in PSL:

Control characters can be embedded in PSL string constants using \A
through \Z to represent Ctrl-A through to Ctrl-Z. A capitalized letter
must always be used; lowercase letters other than those already defined
(that is, t, n, r, or b) are not valid as escapes and will generate a PSL
compilation warning.

When using a \ (backslash) in a string literal, two \\ (back slashes) must
be used because the first will be interpreted as a control character, and the
second will be used as part of the string.

A path for a Windows host is represented in a PSL string as follows:

C:\\PATROL\\lib\\PSL\\

The above string will be interpreted as the following:

C:\PATROL\lib\PSL\

PSL Here Documents

A "here document" is a free-form string which is not modified by the
PSL compiler. Special characters like \n (new line) and \t (tab), which are
used to control output format in strings, are not interpreted when they are
contained in here document constructions.

Table 2-3 PSL String Literals

Constant Definition

\t tab

\n new-line

\r return

\b backspace

\A . . . \Z Ctrl-A . . . Ctrl-Z
BMC Software, Inc., Confidential and Proprietary Information

2-6 PATROL Script Language Reference Manual Volume 1—PSL Essentials

The here document construction starts with <<< followed by a string that
will be used as the here document text delimiter. The here document text
string continues until the delimiter is repeated at the beginning of a line.
The here document delimiter can be any string consisting of letters,
numerals, and underscores (_), without internal blanks.

The here document construction can be used anywhere that a variable or
string can be used, or it can be assigned to a variable.

Example

here_document= <<<Here_Doc_DELIMIT
This is a free-form string.
Special characters like \n are not translated.
However, they would be in a quoted string.
This here document will continue until the delimiter
’Here_Doc_DELIMIT’ is found at the beginning of a line.
That means the above ’Here_Doc_DELIMIT’ was not the end.
The next line is the end delimiter, not part of the string.
Here_Doc_DELIMIT;
print(here_document);

This example returns the following output:

This is a free-form string.
Special characters like \n are not translated.
However, they would be in a quoted string.
This here_document will continue until the delimiter
’Here_Doc_DELIMIT’ is found at the beginning of a line.
That means the above ’Here_Doc_DELIMIT’ was not the end.
The next line is the end delimiter, not part of the string.

Everything between the two delimiters, Here_Doc_DELIMIT, represents
the here_document variable text string.

ActiveX Scripts

With the PATROL Agent for Windows, the execute() function can submit
an ActiveX script to the PATROL Scripting Host. The ActiveX script can
be VBScript, JScript, or any valid Microsoft ActiveX scripting language.
BMC Software, Inc., Confidential and Proprietary Information

PSL Data Types and Operators 2-7

When the execute() function submits an ActiveX script to the
PATROL Scripting Host, the PSL process is suspended, and the script is
sent to the PATROL Scripting Host. When the script finishes, the PSL
process returns to the PSL run queue for execution.

Note
The ActiveX script option is only available with the PATROL Agent for
Windows.

For more information on submitting ActiveX scripts with the
execute() function, see the PATROL Script Language Reference
Manual Volume 2—PSL Functions.

PSL Lists

List values are denoted by separating individual values with commas and
by enclosing the list in square brackets:

[1, 3, 5]

The list is interpolated into a double-quoted string whose elements are
separated by new-line characters. The list is represented internally as

"1\n3\n5"

PSL Simple Statements

The most common simple statement is an expression evaluated for its
side effects, which is called an expression statement. The most common
expression statement is an assignment operation or a function call. Every
expression statement must be terminated with a semicolon:

y = x + 10; # assignment
set("value",50); # function call
s = trim(s,"\t"); # both assignment and function call
BMC Software, Inc., Confidential and Proprietary Information

2-8 PATROL Script Language Reference Manual Volume 1—PSL Essentials

PSL expression statements work like C expressions. The only difference
is the addition of several string operators. See “String Operators” on page
2-13.

PSL Operators
This section describes the operators available in PSL. PSL provides the
following types of operators:

• arithmetic
• assignment
• increment and decrement
• bitwise
• logical
• relational
• shift
• string
• ternary

Arithmetic Operators

For arithmetic operators, an operand is considered a number if its first
character is a digit or a minus sign (–). Otherwise, it is considered a
string and converted to 0 for an empty string or 1 for a nonempty string.

The use of a nonnumber in an arithmetic context may result in a run-time
warning, as discussed in “PslDebug—Run-Time Error Checking
Variable” on page 5-2. Table 2-4 lists the PSL arithmetic operators:

Table 2-4 PSL Arithmetic Operators (Part 1 of 2)

Operator Definition

+ addition

- subtraction

/ division
BMC Software, Inc., Confidential and Proprietary Information

PSL Data Types and Operators 2-9

Assignment Operators

Table 2-5 lists the assignment operators for PSL (such as a+=b is
equivalent to a=a+b):

* multiplication

% modulus

Table 2-5 PSL Assignment Operators

Operator Definition

= assignment

+= self-addition

-= self-subtraction

/= self-division

*= self-multiplication

%= self-modulus

Bitwise Assignment:

&= self-bitwise AND

|= self-bitwise OR

^= exclusive OR bitwise assignment

Shift Assignment:

<<= shift left assignment

>>= shift right assignment

Table 2-4 PSL Arithmetic Operators (Part 2 of 2)

Operator Definition
BMC Software, Inc., Confidential and Proprietary Information

2-10 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Increment/Decrement Operators

For information about limitations with increment/decrement operators,
see “Incompatibilities with the C Programming Language” on page 5-7.
Table 2-6 lists the PSL increment and decrement operators (such as a++
is equivalent to a=a+1):

Bitwise Operators

Table 2-7 lists the bitwise operators defined for PSL (such as a&=b is
equivalent to a=a&b.):

.

Logical Operators

The PSL logical operators assume for their operands that true is
represented by 1 or a nonempty string. False is represented by 0 or an
empty string. However, when PSL logical operators return results, they
always use 1 for true and 0 for false.

Table 2-6 PSL Increment/Decrement Operators

Operator Definition

++ increment

-- decrement

Table 2-7 PSL Bitwise Operators

Operator Definition

& bitwise AND

| bitwise OR

&= self-bitwise AND

|= self-bitwise OR

^ exclusive OR bitwise

^= exclusive OR bitwise assignment
BMC Software, Inc., Confidential and Proprietary Information

PSL Data Types and Operators 2-11

For further information about limitations with logical operators, see
“Incompatibilities with the C Programming Language” on page 5-7.
Table 2-8 lists the PSL logical operators:

Relational Operators

The relational operators perform numeric comparisons if both operands
are numbers. Otherwise they perform string comparisons (that is, lexical,
dictionary ordering).

A string is considered a number if it consists of only digits, the minus
sign, or a period. No white space is allowed. PSL relational operators do
not consider constants in C-like exponential notation (such as 2.3e+27)
to be numbers. Table 2-9 lists the PSL relational operators:

Table 2-8 PSL Logical Operators

Operator Definition

&& logical AND

|| logical OR

! logical negation (NOT)

Table 2-9 PSL Relational Operators

Operator Description

== equal to

!= not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to
BMC Software, Inc., Confidential and Proprietary Information

2-12 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Shift Operators

Shift operators perform bit shifting within bytes. Table 2-10 lists the PSL
shift operators:

String Operators

PSL has special operators for string and list manipulation that are not
found in C.

. (period)

The period indicates the concatenation of two strings.

"ab"."cd" is equal to "abcd"

[s1, s2, ...]

The list operator builds a list by joining all elements in a
comma-separated list into a double-quoted string of items delimited by a
new-line characters, which is PSL’s representation for lists/arrays. ["a",
"b", "c"] is equal to "a\nb\nc"

Warning
The list operator ignores the NULL string (""). The ["a", "", "b"]
list is equal to "a\nb", but not "a\n\nb". Use the new-line character to
separate the members of a list if the list contains the NULL string.

Table 2-10 PSL Shift Operators

Operator Description

<< shift left

<<= shift left assignment

>> shift right

>>= shift right assignment
BMC Software, Inc., Confidential and Proprietary Information

PSL Data Types and Operators 2-13

=~ (equal tilde)

The =~ operator is used in the expression string =~ pattern and
returns the following values:

• 1 if the regular expression pattern is contained in string
• 0 if the regular expression pattern is not contained in string

If pattern is invalid, PSL returns a run-time error message, and the =~
operation returns 0 (pattern not contained).

!~ (tilde)

The !~ operator is used in the expression string !~ pattern and
returns the following values:

• 1 if the regular expression pattern is not contained in string
• 0 if the regular expression pattern is contained in string

If pattern is invalid, PSL returns a run-time error message and the !~
operation returns 0 (pattern contained).

Ternary Operator

The PSL ternary operator ?: behaves similarly to the C conditional
expression in that it connects three operands and offers an alternative
way of expressing a simple if...else statement. The format for the
PSL conditional expression is as follows:

result = expression1 ? expression2 : expression3;

If expression1 is TRUE (nonzero), then expression2 is evaluated;
otherwise, expression3 is evaluated. The value for the complete
conditional expression is the value of either expression2 or expression3,
depending on which expression was evaluated. The value of the
expression may be assigned to a variable.

Conditional expressions are most useful in replacing short, simple
if...else statements. For example, the if...else statement
BMC Software, Inc., Confidential and Proprietary Information

2-14 PATROL Script Language Reference Manual Volume 1—PSL Essentials

if (x==1) {
y=10;

}
else {

y=20;
}

can be replaced with the one-line conditional statement

y = (x==1) ? 10 : 20;

These examples perform the same function. If x is 1, then y becomes 10
else y becomes 20.

PSL Operator Precedence and Associativity

The precedence and associativity of PSL operators is almost identical to
that of C and Perl. Table 2-11 lists the PSL operators in ascending order
of precedence:

Table 2-11 PSL Operator Precedence and Associativity (Part 1 of 2)

Operator Precedence Associativity

= lowest right

+=, -=, <<=, >>=, ^= right

*=, /=, %= right

|=, &= right

?: (ternary) right

|| left

&& left

| left

^ left

& left

!=, ==, =~, !~ left

<, <=, >, >= left

<<, >> left
BMC Software, Inc., Confidential and Proprietary Information

PSL Data Types and Operators 2-15

+, - (binary) left

*, /, % left

. (string concat) left

-, !, ++, -- right

() left

[] highest left

Table 2-11 PSL Operator Precedence and Associativity (Part 2 of 2)

Operator Precedence Associativity
BMC Software, Inc., Confidential and Proprietary Information

2-16 PATROL Script Language Reference Manual Volume 1—PSL Essentials

3

3
3

PSL Statements 3

This chapter describes the statements that are supported by PSL. The
following topics are discussed:

Introduction . 3-2
PSL Compound Statements . 3-2
do...until . 3-4
exit . 3-6
export . 3-7
for . 3-9
foreach . 3-11
function. 3-13

return Statement . 3-14
Functions with Variable Length Argument Lists 3-15
Defining Local Variables . 3-16
Entry Point Function . 3-17
Start of Execution Without an Entry Point Function 3-18
Backward Compatibility with Earlier PSL Versions 3-19
Limitations of User-Defined Functions . 3-19

if . 3-21
last. 3-23
next . 3-24
requires . 3-25
switch . 3-28
while . 3-33
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-1

Introduction

A PSL script consists of a sequence of commands. All uninitialized
user-created objects are assumed to start with a NULL or 0 value until
they are defined by some explicit operation such as assignment.

PSL is, for the most part, a free-form language. That is, lines don’t have
to start or end at or before a particular column; they can just continue on
the next line. White space is ignored except for the separation of tokens.
Comments are indicated by the # character and extend to the end of the
line.

For example, here is a comment about an assignment statement:

x = y; # Assign the value of y to the variable x

PSL Compound Statements
PSL compound statements include loop statements and if statements. In
PSL, a sequence of statements can be treated as one statement by
enclosing it in braces {}. We will call this a statement block and denote it
in the statement descriptions as {BLOCK}. The following compound
statements can be used to alter or change the flow of control in a PSL
program:

if (expression) {BLOCK}

if (expression) {BLOCK} else {BLOCK}

if (expression) {BLOCK}
elsif (expression) {BLOCK}
. . .
else {BLOCK}

foreach variable (array) {BLOCK}

foreach unit variable (array) {BLOCK}
BMC Software, Inc., Confidential and Proprietary Information

3-2 PATROL Script Language Reference Manual Volume 1—PSL Essentials

switch(variable)
{

case m: {BLOCK}
. . .
case n: {BLOCK}
default: {BLOCK}

}

while (expression) {BLOCK}

do {BLOCK} until (expression);

for ([initexpr];[termexpr];[reinitexpr]) {BLOCK}

Note
These compound statements are defined in terms of statement blocks, not
statements. This means that the braces are required rather than optional.
No dangling statements are allowed.
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-3

do...until
Loops through a BLOCK of PSL code until an expression is evaluated as
TRUE

Format

do {
{BLOCK}

} until (expression);

Parameters

Description

The PSL do...until loop behaves similarly to the C do...while loop construct
in that it tests the termination condition at the end of the loop after
making each pass through the body of the loop. Therefore, the body is
always executed at least once. At first pass, the BLOCK of statements is
executed, then expression is evaluated. If expression is FALSE, the
BLOCK of statements is executed again. Iteration repeats until expression
is TRUE.

Example

The following example demonstrates the PSL do...until loop:

Parameter Definition

BLOCK one or more PSL statements that are repeatedly
executed until the evaluation of expression is TRUE

expression a PSL statement whose evaluation returns either TRUE
or FALSE

If TRUE, the loop terminates.
BMC Software, Inc., Confidential and Proprietary Information

3-4 PATROL Script Language Reference Manual Volume 1—PSL Essentials

i = 10;
do {

printf(" %d seconds to go\n",i);
i--;
sleep(i);

} until (i == 0);

This example produces the following output:

10 seconds to go
 9 seconds to go
 8 seconds to go
 7 seconds to go
 6 seconds to go
 5 seconds to go
 4 seconds to go
 3 seconds to go
 2 seconds to go
 1 seconds to go
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-5

exit
Immediately terminates the execution of a PSL program

Format

exit;

Parameters

This statement has no parameters.

Description

The exit statement causes the PSL program to immediately end and
return control to the process that called it. The exit statement must be
terminated with a semicolon when used in a PSL program.
BMC Software, Inc., Confidential and Proprietary Information

3-6 PATROL Script Language Reference Manual Volume 1—PSL Essentials

export
Makes a variable or a function in a PSL library available to other PSL
libraries and functions

Format

export variable;
export function function;

Parameters

Description

The export statement makes a variable or function in a PSL library
available for export to another PSL library or program using the requires
statement. Each export statement can specify a single variable or
function.

Global variables and functions need not be declared before the export
statement. The export statement does not require that a variable be
explicitly defined within a library, but it does require that it appear in a
PSL statement to create an implicit definition.

Placement of the export Statement

The export function function statement can appear before or after the actual
function definition. The export variable statement can appear before or
after the first appearance of a global variable.

Parameter Definition

variable name of a PSL variable that is available for export to
another PSL program

function name of a PSL function that is available for export to
another PSL program
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-7

An export statement can appear inside a function definition without any
special significance. BMC Software discourages placing export statements
inside function definitions.

Errors Involving the export Statement

The export statement can generate compiler errors in the following
instances:

• variable or function is not defined or used in the library
• variable or function is a PSL built-in function
• variable is a local variable of a user-defined function in the library
• variable or function is duplicated in another export statement
• variable or function has been imported using the requires statement
BMC Software, Inc., Confidential and Proprietary Information

3-8 PATROL Script Language Reference Manual Volume 1—PSL Essentials

for
Loops through a BLOCK of PSL code for a specified period

Format

for ([initexpr];[termexpr];[reinitexpr]) {
{BLOCK}

}

Parameters

Description

The for loop behaves similarly to the C for loop construct in that it is an
iteration statement in which the following occurs:

1. The first expression initexpr is evaluated once, initializing the loop.

2. The second expression termexpr is evaluated before each iteration
and, if it becomes equal to 0, the for loop terminates.

3. The third expression reinitexpr is evaluated after each iteration,
reinitializing the loop.

The for loop is equivalent to the following example:

Parameter Definition

initexpr a PSL statement whose evaluation initializes the loop

termexpr a PSL relational expression whose evaluation
determines the continuation or termination of the loop

reinitexpr a PSL statement whose evaluation reinitializes the loop

BLOCK one or more PSL statements that are executed once in
accordance with the evaluation of the expressions
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-9

initexpr;

while (termexpr) {
BLOCK
reinitexpr;

}

Generally, initexpr and reinitexpr are assignments or function calls, and
termexpr is a relational expression. Any of the three expressions may be
omitted; however, the semicolons must remain. A missing second
expression termexpr makes the implied test equivalent to testing a
non-zero constant (or a permanently true expression).

Example

The following example demonstrates the for loop:

for (i = 10; i > 0; i--) {
printf(" %d seconds to go\n",i);
sleep(1);

}

The output of this example is as follows:

10 seconds to go
 9 seconds to go
 8 seconds to go
 7 seconds to go
 6 seconds to go
 5 seconds to go
 4 seconds to go
 3 seconds to go
 2 seconds to go
 1 seconds to go
BMC Software, Inc., Confidential and Proprietary Information

3-10 PATROL Script Language Reference Manual Volume 1—PSL Essentials

foreach
Iterates over a list and sets variable to be each element of list, performing
BLOCK for each element of list

Format

foreach variable (list) {BLOCK}
foreach unit variable (list) {BLOCK}

Parameters

Description

The foreach loop iterates over list and sets variable to be each element of
list, performing BLOCK for each element of list in turn.

Parameter Definition

unit controls how list is split into individual elements

Valid Values
• word assumes that the array elements are separated

by white space (spaces, tabs, or \n)
• line assumes that array elements are separated by
\n

Default
line

variable the name of the element that is equated to each
element in list

list a list that contains one or more elements that can be
equated to variable

BLOCK one or more statements that are executed when
variable has been equated to an element from list
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-11

Examples

The following examples highlight the usage of the foreach statement:

Sum the Elements in an Array

sum = 0;
foreach elem ("1\n2\n3\n4\n5") {

sum += elem;
}

List the Login ID of Each Account on the System

foreach user (cat("/etc/passwd")) {
print (ntharg(item, 1, ":"), "\n");

}

Note
cat() and ntharg() are built-in PSL functions.

Count the Number of Words in a String

words = 0;
foreach word w ("The cat sat on the mat.") {

words++;
}

BMC Software, Inc., Confidential and Proprietary Information

3-12 PATROL Script Language Reference Manual Volume 1—PSL Essentials

function
Specifies a user-defined function

Format

function name([argument-list]) {BLOCK}

Parameters

Parameter Definition

name character label that is used to identify and call the
function from within the PSL program

The name cannot be the same as a PSL built-in
function, or a PSL variabl.e

argument-list up to 20 optional PSL variables that are passed
to the function as parameters when it is called for
execution

The argument-list can be a NULL entry if no
variables are passed to the function, a single
argument, or several arguments separated by
commas.

Optional ellipses indicating that the function will
accept an additional variable number of
arguments. This variable portion of the argument
list is processed using the va_start() and va_arg()
PSL built-in functions. See “Functions with
Variable Length Argument Lists” on page 3-15
and the PATROL Script Language Reference
Manual Volume 2—PSL Functions.

BLOCK one or more PSL statements that define the
action the function performs
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-13

Description

The function statement provides user-defined functions within PSL
programs similar to those available in the C programming language. The
function keyword is required in a user function definition.

Two additional keywords, local and return, are optional:

• local declares variables that will be used only within the function.
• return identifies function output that is returned to the caller

Functions must be defined before their first use, and the correct
argument-list must be passed in a function call. A function call always
returns a character string representing a character string or numeric
value. (All data types are represented within PSL as character strings.)

Arguments are passed-by-value to parameters (that is, local copies are
created from the arguments’ data passed in), and thus changing a
parameter will not affect the value of the argument. Function parameters
are local to a function and can have names the same as global variables
(or the same as parameters of other functions).

If a function definition appears in the middle of executable statements
and control flow reaches that definition from above, the definition is
skipped as a comment is skipped. The only way to enter the body of a
function is to explicitly call it. The function definitions serve merely to
define a function and are not invoked until called. Hence, it is possible to
place executable code above, below, and between function definitions.

return Statement

There are three ways to exit a user-defined function:

• return with a return value
• return without a return value (return value = NULL string)
• fall through to the bottom right brace (return omitted, no return

value)
BMC Software, Inc., Confidential and Proprietary Information

3-14 PATROL Script Language Reference Manual Volume 1—PSL Essentials

PSL does not interpret falling through the bottom of a function as an
error condition, although BMC Software does not recommend relying on
“fall-through” for a function whose return value is used.

PSL produces a compilation warning similar to that produced by C
compilers when it encounters return statements within a function of
which some have return values and while others do not. Having multiple
exit points in a function that exit in different ways may indicate
confusion over whether the function was defined to perform an action or
return a value.

BMC Software recommends that you design functions that return a value
to explicitly return the NULL string when they have no other value to
return. This is preferred to exiting the function with a return statement
and no return value.

Functions with Variable Length Argument Lists

The use of the ellipsis (...) in a function() statement indicates that the
function will accept zero or more additional arguments. A function()
statement that contains ellipses is said to be a variable length argument
list function.

Following is an example of a variable argument list function that also has
two fixed arguments, argno1 and argno2:

function myfunc(argno1,argno2,...) {BLOCK}

Because argno1 and argno2 are fixed arguments, they must be included
in every call to my_func(). The ellipsis, however, indicates that any
number of additional arguments may also be included in a call to
my_func(). For example, the following are legal calls to my_func()
because each includes two or more arguments:

my_func(1,2);
my_func(1,2,3,4,5);

The following, however, is not a valid call to my_func() because it does
not include the minimum two fixed arguments:
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-15

my_func(1); # illegal function call!

You can process a variable argument list within your function() statement
using the PSL va_start() and va_arg() functions:

• The va_start() function initializes the variable argument list to return
the first argument. You can use the va_start() function multiple times
within a function() statement to initialize the variable argument list,
allowing the function() statement to traverse the variable argument
list more than one time.

• The va_arg() function returns the current argument in the variable
argument list and increments. Successive va_arg() function calls
return successive arguments from the variable argument list until all
arguments have been returned. Unless you call the va_start() function
to reinitialize the variable argument list, the va_arg() function returns
a NULL after all variable arguments have been returned.

See the PATROL Script Language Reference Manual Volume 2—PSL
Functions for descriptions and examples of the va_arg() and va_start()
built-in functions.

Defining Local Variables

User-defined function local variables are declared using the local
keyword inside the body of the function. The local keyword declares
one or more variables specified in a comma-separated list that is
terminated by a semicolon. These names become local variables to the
function. Following is an example of local variable definitions:

function f() {
local x;
local a,b;
. . . Statements for the function execution.

}

BMC Software, Inc., Confidential and Proprietary Information

3-16 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Local variables cannot have the same name as a function parameter or
another local variable in the same function. Local variable names in one
function do not affect those in another function. Local variables can have
the same name as a global variable and can “hide” a global name this
way. BMC Software does not recommend that you use local variables
this way, and PSL will generate a compiler warning each time it detects
this situation.

Local variable declarations are treated as expressions and can appear
anywhere within the function that an expression is valid. However, there
is no concept of inner scopes in inner blocks, and a local variable has
scope extending from its point of declaration to the end of the enclosing
function (not the enclosing block). BMC Software recommends that you
declare all local variables at the start of the function body.

Local variables are initialized to the empty string every time the function
is entered. They do not retain their values from a previous call.

Each user-defined function (except for the main() function) permits a
maximum of 20 local variables.

Entry Point Function

In earlier releases of PSL, the program entry point was always the first
PSL statement. Although the current PSL still supports this concept, the
addition of user-defined functions defined at the beginning of a program
causes a need for other possible entry points. One of these is the PSL
entry point function.

The PSL entry point function is equivalent to the C language main()
function. If a PSL program contains a user-defined function named main,
execution begins at the first statement in main(). The PSL program
terminates normally when main() returns.
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-17

You can specify that a user-defined function with a label other than
main() be treated as the main program entry point by specifying the -e
option to the PSL stand-alone compiler. Refer to Chapter 4, “PSL
External Commands,” for a description of the PSL compiler command
and options. The function you specify as the entry point is permitted to
have the same properties as main().

The main() function or the entry point function must be defined in the
top-level PSL program and not in any imported libraries. Functions
imported from libraries are ignored when determining whether an entry
point function is available.

Start of Execution Without an Entry Point Function

If there is no main() function and no entry point function specified
using the PSL compiler -e option, execution begins at the first
executable statement that is not inside a function definition. This
behavior maintains backward compatibility with previous versions of
PSL.

A program without an entry function will normally have function
definitions at the top (they must be defined before their first use) and the
main executable statements afterwards. A typical example would be the
following:

function max(x,y) {
if(x > y) {

return x;
} else {

return y;
}

}
m = max(1,2); # Execution starts here
print("maximum is ", m, "\n");

As indicated, program execution begins immediately after the function
definition.
BMC Software, Inc., Confidential and Proprietary Information

3-18 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Backward Compatibility with Earlier PSL Versions

Almost all programs written in earlier versions of PSL should function
identically under the new PSL version. Notably, there is no need to
change older PSL scripts to have a main() function or entry point
function since the current PSL version supports and defaults to older
style of execution at the first statement.

Run-time errors may occur if you attempt to migrate a program written
using the current version of PSL back to an earlier version. Older
versions of PSL will not recognize the following function keywords:

• function
• local
• return

Limitations of User-Defined Functions

User-defined functions are subject to the following limitations.

Function Calls Are Non-Recursive

User-defined functions can make unlimited calls to other functions
provided that there is no direct or indirect recursion in the sequence of
calls.

PSL user-defined functions do not support recursion because each
function has only one block of memory for its parameters and local
variables. A recursive call would overwrite the parameters for the
previous (and still active) call.

PSL prevents direct recursion by generating a compilation error. The PSL
compiler may compile and execute a program with indirect recursion, but
the potential for overwriting the parameters and variables for an active
function will produce unexpected results.
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-19

Argument Pass by Reference Not Supported

PSL functions do not support argument passing by reference; only
argument pass-by value is supported. PSL also has no concept of
pointers, which are used in the C programming language to mimic
pass-by reference.

Parameter and Local Variable Limits

PSL functions, including main(), have the following parameter and local
variable limits:

• maximum of 10 parameters
• maximum of 20 local variables

Function Nesting Not Permitted

PSL does not permit function nesting—each function definition must be
at global scope and cannot be defined inside any other function.
BMC Software, Inc., Confidential and Proprietary Information

3-20 PATROL Script Language Reference Manual Volume 1—PSL Essentials

if
Conditionally executes a BLOCK of PSL code

Format

if (expression)
{BLOCK}

if (expression)
{BLOCK} else {BLOCK}

if (expression)
{BLOCK}

elsif (expression)
{BLOCK}

. . .
else

{BLOCK}

Parameters

Description

The if statement conditionally executes a BLOCK of PSL code. The if
statement is straightforward. Since a statement BLOCK is always
bounded by braces, there is no ambiguity about which if, elsif, and else
goes with.

Parameter Definition

expression a PSL statement whose evaluation returns either TRUE
or FALSE

BLOCK one or more PSL statements that are executed once in
accordance with the evaluation of the if or elsif
expressions
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-21

Examples

The following examples highlight the usage of if, elsif, and else:

if statement

if (x > 10) {
 x = 10; # don’t let x get bigger than 10

}

if . . . else Statement

if (x == 0) {
do something

} else {
x != 0
do something else

}

if . . . elsif . . . else Statement

if (x == 0) {
do something

} elsif (x == 1) {
do something else

} else {
x != 0 && x != 1
do something else

}

BMC Software, Inc., Confidential and Proprietary Information

3-22 PATROL Script Language Reference Manual Volume 1—PSL Essentials

last
Causes a PSL process to exit the innermost execution loop

Format

last;

Parameters

This statement has no parameters.

Description

The last statement causes PSL execution to exit the innermost execution
loop. The last statement is equivalent to the C break statement. The last

statement must be terminated with a semicolon when used in a PSL
program.
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-23

next
Immediately starts the next iteration of the innermost execution loop

Format

next;

Parameters

This statement has no parameters.

Description

The next statement immediately starts the next iteration of the innermost
execution loop. The next statement is equivalent to the C continue
statement.
BMC Software, Inc., Confidential and Proprietary Information

3-24 PATROL Script Language Reference Manual Volume 1—PSL Essentials

requires
Imports variables and functions from a PSL library

Format

requires library;

Parameter

Description

The requires statement imports variables and functions identified in export
statements from a previously created PSL library into the PSL program.
Each requires statement can specify a single library name.

PSL contains no explicit import statement; using the requires statement
implies importation. The requires statement searches for the binary
containing the library and reads all its export statement information, then
imports the specified variables and/or functions into the PSL program.

Any number of requires statements can appear in a PSL program. All
libraries specified in requires statements must be available to the compiler
during compilation.

Parameter Definition

library name of the library whose specified export variables
and functions are to be imported into the PSL program
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-25

requires Statements in Imported Libraries

The PSL compiler will automatically resolve nested dependencies in
imported libraries, but it will not automatically load all the other
exported functions and variables found in the library that satisfies the
nested dependency. You must explicitly import a library in order to
guarantee access to all the exported variables and functions within it.

A requires statement can appear inside a function definition without
special significance. BMC Software discourages placing export statements
inside function definitions and recommends that you place all requires
statements at the top of the file.

Note
BMC Software recommends that you minimize the use of export
statements in libraries where the exported variables and functions depend
on variables and functions imported with requires statements from other
libraries. Following this practice can avoid chains of import
dependencies and the possibility of libraries that form requires statement
loops.

Variable and Function Availability Among Imported Libraries

When a PSL program imports variables and functions from more than
one library, the imported variables and functions from one library can set
and use the imported variables and functions from the others, regardless
of how the libraries are loaded for compilation.

BMC Software strongly recommends that you avoid the practice of
creating and importing mutually referential libraries. Mutually referential
libraries are those that contain a requires statement naming the other
library.

Errors Involving the requires Statement

The requires statement can generate compiler errors in the following
instances:
BMC Software, Inc., Confidential and Proprietary Information

3-26 PATROL Script Language Reference Manual Volume 1—PSL Essentials

• A reference to an imported variable or function appears before the
requires statement that imports it. You must place a requires statement
before the first use of the imported variable or function.

• An imported function has the same name as a function defined within
the PSL program.

• The same variable or function name is imported from two or more
libraries.
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-27

switch
Executes a specific BLOCK of PSL code based on the value of a variable

Format

switch (expression)
{

case a: {BLOCK}
case b: {BLOCK}
. . .
case p,q,r: {BLOCK}
. . .
case n: {BLOCK}
default: {BLOCK}

}

Parameters

Description

The switch statement evaluates expression and based on its integer value
executes a specific PSL BLOCK. The case labels correspond to the values
of expression for which a specific PSL BLOCK is available.

Parameter Definition

expression a PSL expression whose integer value specifies the
PSL statement BLOCK that will be executed

a,b, ... p,q,r, ... n an integer values indicating the value of variable that will
cause the corresponding BLOCK to be executed

BLOCK one or more statements that are executed when the
corresponding case value equals variable
BMC Software, Inc., Confidential and Proprietary Information

3-28 PATROL Script Language Reference Manual Volume 1—PSL Essentials

If the value of expression falls outside the range of the values in the case
labels, execution continues with the BLOCK corresponding to the default
label. If no default label exists, execution will continue with the first
statement following the switch statement.

The switch statement is similar in form and function to the C switch
statement.

The PSL switch statement executes in almost the same way as a long
sequence of if-then-else-if statements. A case or default clause is effectively a
run-time statement that specifies a comparison against the value of
expression:

• If the value of expression matches a case, execution moves inside the
BLOCK for the case or default clause; and after completing BLOCK,
execution continues after the entire switch statement (that is, there is
no falling through to the next case clause).

• If the value of expression does not match a case, execution skips to
the default clause; and if there is none, execution moves to the
statement following the switch statement.

Any statement within the switch statement case block that is not part of a
case or default BLOCK executes only if all the case labels above it failed to
match expression (that is, it executes as part of the normal sequence of
control flow).

Differences between the PSL and C switch Statements

The following differences exist between the PSL switch statement and the
C switch statement:

• PSL case expressions can be dynamically evaluated expressions
whereas C only permits constant expressions.

• The colon delimiter that separates the case label from the executable
BLOCK is optional in PSL and required in C.
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-29

• PSL requires that the default label follow all case labels in the switch
statement case block, whereas C allows default to appear
anywhere within the case labels. PSL returns a compilation error if
one or more case labels follow default.

• PSL does not return a compilation error for duplicate case labels in
the switch statement case block, whereas C does. In PSL, the second
of the duplicate case labels is unreachable.

• PSL allows multiple cases that execute a common BLOCK to be
specified as a comma separated list within a single case label, where
C requires that each case be a separate case label stacked above a
single BLOCK. (Conversely, the stacked labels will not work in PSL.)

• Execution of a PSL BLOCK does not “fall through” to the next case
label and BLOCK, as it does the C switch statement. Upon reaching
the closing right brace of a case or default BLOCK, execution moves to
the end of the PSL switch statement.

• The PSL switch statement uses the last statement to exit from a
BLOCK, whereas C uses the break statement. The last statement
exits the innermost switch statement or loop. However, because of the
absence of “fall-through” in PSL, there is little need to use the last
statement in the switch statement.

Similarities between the PSL and C switch Statements

The following similarities exist between the PSL switch statement and the
C switch statement:

• both generate a compiler error upon detecting two default labels in a
single switch statement

• both permit nested switch statements
BMC Software, Inc., Confidential and Proprietary Information

3-30 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Efficiency of switch Statements versus If-Then-Elsif Sequences

Because of the similar method of implementation, there is almost no
difference in efficiency between PSL switch statements and if-then-elsif
sequences. Programming style is the main consideration in the choice. To
speed up switch statements, BMC Software recommends that you specify
the most likely cases first. The speedup is also true of if-then-elsif
sequences.

Pitfall: switch Statement case Labels That Modify case Variables

The case BLOCKs are evaluated at run-time in their order of appearance:

• case order for BLOCKs
• left-to-right for expressions in the comma-separated lists of

multiple-case labels

All expressions within a comma-separated list are evaluated before the
case label. This evaluation occurs even if the first expression is a match.

This sequence and method of evaluating the case label can be a
dangerous pitfall if any expression in the list modifies either variable for
the current switch statement or a variable used in another case expression.

Pitfall: Statements Inside a switch Statement That Are Not Part of a BLOCK

Under PSL, statements within a switch statement that are not part of a
BLOCK (free statements) can and will be executed if they are reached by
the flow of execution. The condition for control flow to reach these
statements is that variable cannot match any of the case labels that
precede them within the switch statement.

Pitfall: Nesting case Labels That Use the Same Variable

PSL does not return a warning or error message when two case labels
evaluated against expression are nested one inside the other. Two
examples of this situation are shown in the following PSL switch
example:

switch(x)
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-31

{
case 1:
{

f1() # Function f1 Called
case 2 : {f2();} # Function f2 Unreachable
f3(); # Function f3 Called

}
default: {case 4: {f4();}} # Function f4 called if x=4

}

Since case and default labels are run-time statements, the effect of one case
label nested within another is that expression must match the case value
for the case BLOCK to execute. This means that expression must equal
two different values! In case 1 of the example, f2 will never be called
because x cannot equal both 1 and 2.

In the default case of the example, f4 will be called if expression = 4
because there is no case 4 defined in the switch statement. When
expression = 4, the default BLOCK executes, containing the case 4
BLOCK call to function f4.

Although nesting case labels within one another is possible and may have
some utility, BMC Software views them as a potential pitfall both
because of the possibility of creating unreachable BLOCKs and because
future PSL versions may not support case label nesting.
BMC Software, Inc., Confidential and Proprietary Information

3-32 PATROL Script Language Reference Manual Volume 1—PSL Essentials

while
Executes a BLOCK of PSL code while the evaluation of a statement is
TRUE

Format

while (expression) {BLOCK}

Parameters

Description

The while loop executes statements as long as expression evaluates to
TRUE (non-zero).

Example

The following sample PSL statements print the integers from 1 to 10:

x = 1;
while (x <= 10) {

print (x, " ");
x++;

}
print ("\n");

Parameter Definition

expression a PSL statement whose evaluation returns either TRUE
or FALSE

BLOCK one or more PSL statements that execute repeatedly as
long as expression evaluates to TRUE
BMC Software, Inc., Confidential and Proprietary Information

PSL Statements 3-33

BMC Software, Inc., Confidential and Proprietary Information

3-34 PATROL Script Language Reference Manual Volume 1—PSL Essentials

4

4
4

PSL External Commands 4

PSL provides several commands external to the language that allow you
to execute PSL commands from the operating system command line and
to compile and execute PSL programs. The following topics are
discussed:

%DUMP—List Specific Information. 4-2
%DUMP CHANNELS—List PSL Global Channels 4-3
%DUMP LIBRARIES—List Loaded PSL Libraries 4-4
%PSL—Execute a PSL Statement . 4-6
%PSLPS—List Current PSL Processes . 4-7
psl—PSL Compiler Command. 4-8
BMC Software, Inc., Confidential and Proprietary Information

PSL External Commands 4-1

%DUMP—List Specific Information
Return a list of specific information

Format

%DUMP option

Parameters

This command has no parameters.

Description

The %DUMP command returns a list of information that is specified by the
parameter option.

Field Definition

option • ALL—returns info about PATROL Agent data structures
• APP_INSTS—returns info about each application instance
• APPS—returns a list of applications
• CHANNELS—returns a list of open PSL global file and

process channels
• CONSOLES—returns a list of connected consoles
• ERRORS—returns a list of PSL errors that have occurred
• GLOBALS—returns a list of global channels
• KM_LIST—returns a list of loaded KMs
• LIBRARIES—returns a list of loaded libraries
• PARAMS—returns a list of PATROL Agent parameters
• RTLIST—returns info about processes in the Agent run-time

queue
• RUNQ—returns a list of items scheduled in the run queue
• TASKS—returns a list of current tasks
BMC Software, Inc., Confidential and Proprietary Information

4-2 PATROL Script Language Reference Manual Volume 1—PSL Essentials

%DUMP CHANNELS—List PSL Global Channels
List open PSL global process and file channels

Format

%DUMP CHANNELS

Parameters

This command has no parameters.

Description

The %DUMP CHANNELS command returns a list of global file and process
channels opened using either the fopen() or popen() functions. The
output from the %DUMP CHANNELS command contains the same
information as that provided by the get_chan_info() function within
a PSL program. The PSL interpreter returns the list of global channel
information to the console window from which the %DUMP CHANNELS
command was executed.

Note
The %DUMP CHANNELS command is one of a series of dump commands
available from the command line. Use the %DUMP command (no
argument) to obtain a list of items that can be dumped.

Each line of output from the %DUMP CHANNELS command is a string
with the format:

name status details type readname readpid writepid writename

Field Definition

name alphanumeric name given to the channel when it was
created as a global channel, or when it was changed
from local channel to a global channel
BMC Software, Inc., Confidential and Proprietary Information

PSL External Commands 4-3

%DUMP LIBRARIES—List Loaded PSL Libraries
Display a list of libraries that the Agent has loaded

Format

%DUMP LIBRARIES

status OPEN or CLOSED

details one of the following
• fopen() channel—file name that is opened or NONE

if no file name is open
• popen() channel—process ID of the external

operating system process to which the channel is
attached or –1 if the process has terminated

type PIPE or FILE

readname one of the following
• name of the process waiting to read from the channel
• NONE if no process is waiting
• UNAVAILABLE if there is a process but the name is

not available

readpid one of the following
• process ID of the PSL process waiting to read from

the channel
• –1 if no process is waiting

writepid one of the following
• process ID of the PSL process waiting to write to the

channel
• –1 if no process is waiting

writename one of the following
• name of the process waiting to write to the channel
• NONE if no process is waiting
• UNAVAILABLE if there is a process but the name is

not available

Field Definition
BMC Software, Inc., Confidential and Proprietary Information

4-4 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Parameters

This command has no parameters.

Description

Each line of output from the %DUMP LIBRARIES command is a string
with the format:

library_name - status, date

Example

When typed into the computer window, the command
OS>%DUMP LIBRARIES outputs the following:

================ Currently Loaded Libraries =========================
response_def_lib.lib - unmodified, Wed Nov 6 15:34:42 1996
unix_misc_lib.lib - unmodified, Wed Dec 11 13:11:16 1996
set_share_lib.lib - unmodified, Tue Nov 26 16:56:38 1996
===

Field Definition

library_name the name of the loaded library

status indicates if the library has been modified on disk since it
was loaded by the agent

date the last modification date the library had when it was
loaded by the agent
BMC Software, Inc., Confidential and Proprietary Information

PSL External Commands 4-5

%PSL—Execute a PSL Statement
Execute a one-line PSL statement

Format

%PSL statement

Parameter

Description

The %PSL command submits statement to the PSL interpreter for
immediate interpretation.

Parameter Definition

statement one or more PSL statements or built-in functions that
are to be executed

The %PSL command and statement must fit on a single
input line.
BMC Software, Inc., Confidential and Proprietary Information

4-6 PATROL Script Language Reference Manual Volume 1—PSL Essentials

%PSLPS—List Current PSL Processes

List all scheduled or active PSL processes on the computer system

Format

%PSLPS

Parameters

This command has no parameters.

Description

The %PSLPS command returns a list of currently scheduled or active PSL
processes on the computer system to the console window. The
information displayed by the %PSLPS command includes the process
identifier (PID) and the name of the PSL process or command.
BMC Software, Inc., Confidential and Proprietary Information

PSL External Commands 4-7

psl—PSL Compiler Command

Call the PSL interpreter and compiler for the specified PSL source file

Format

psl
psl inputfile [-o outfile -n -r -w -l -P -O -q -b -R

-h -v -e functionname -s librarynames -S]
BMC Software, Inc., Confidential and Proprietary Information

4-8 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Parameters

Parameter Definition

no parameters

Entering this command without parameters starts
an interactive mode of the PSL compiler. It
executes everything that you type at a prompt that
precedes the end of file (EOF) character, which is
Ctrl+d or Ctrl+c on most platforms.

inputfile name of the PSL source file

-o outfile write the compiled binary output as the file outfile

This option implicitly includes the -n option; that is,
the -o option does not schedule outfile for
execution after compilation.
The PSL compiler may add a .lib or .bin
extension to outfile if you selected the -l or -b
option respectively.

-n do not schedule outfile for execution after
compilation

-r suppress run-time error messages

This option is equivalent to including the statement
PslDebug = 0; in the PSL script.

-w suppress compilation warning messages produced
by the PSL compiler

-l write the compiled output in library mode as the file
outfile.lib.

This option implicitly includes the -n option; that is,
the -l option does not schedule outfile.lib for
execution after compilation.

-P activate the PSL Profiler

-O specify the optimizer level

For more information about optimizer levels, see
“Optimization Levels” on page C-11.)

-q print the PSL bytecode to the screen
BMC Software, Inc., Confidential and Proprietary Information

PSL External Commands 4-9

-b write the compiled output in binary mode as the file
outfile.bin

This option implicitly includes the -n option; that is,
the -b option does not execute the binary after
compilation.

-R inform the PSL compiler that statically or
dynamically loaded libraries are required for the
compilation

Default
No statically or dynamically loaded libraries are
required for the compilation.

-h display command line help information

-v display version number information

-e functionname specify the user-defined function functionname
within the PSL source file as the execution entry
point for the compiled program

Default
Execution begins with the first statement within
inputfile that is not part of a user-defined function
definition.

-s instruct the PSL compiler to statically load all user
libraries required for compilation

Default
Load library names with the .lib extension
statically and all other library names dynamically.

librarynames list of user library names that should be statically
loaded for compilation

Library names should have the format
library_name.lib. The PSL compiler loads any
library name without the .lib extension
dynamically unless the -l flag is specified.

-S display the PSL symbol table

Parameter Definition
BMC Software, Inc., Confidential and Proprietary Information

4-10 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Description

The psl command creates an executable binary file from inputfile and
specified librarynames. The stand-alone interpreter will immediately
execute the compiled binary if options -o outfile, -l, and -b are omitted.
Use this command to create PSL libraries and PSL binaries that can be
used in the PATROL Agent. Doing so allows for a significant
performance gain.

The following types of PSL functions are not supported by the
stand-alone PSL interpreter:

• functions that rely on the object hierarchy of the PATROL Agent
such as create(), destroy(), history(), get_ranges(), and other functions

• functions that rely on multiple PSL processes such as the lock()
function

• SNMP functions
• event management functions
• response() functions

Other PSL functions that do not rely on the PATROL Agent such as file
manipulation, string manipulation, and print functions will work.
BMC Software, Inc., Confidential and Proprietary Information

PSL External Commands 4-11

BMC Software, Inc., Confidential and Proprietary Information

4-12 PATROL Script Language Reference Manual Volume 1—PSL Essentials

5

5
5

Diagnosing PSL Program Errors 5

This chapter provides information on diagnosing PSL errors. The
following topics are discussed:

PslDebug—Run-Time Error Checking Variable 5-2
errno—Error Return Code Variable . 5-6
exit_status—System Return Code Variable . 5-7
Incompatibilities with the C Programming Language 5-7

Operators && and || . 5-7
Prefix and Postfix Operators ++ and -- . 5-8
Break and Continue Statements . 5-8

Common PSL Coding Errors . 5-8
Character Strings Interpreted as Numbers 5-9
Floating Point Numbers Interpreted as Character Strings 5-10
Character Strings Interpreted as Variable Names 5-10
PSL Functions That Do Not Modify Their Arguments 5-11
Functions That Do Not Write to the Console Window 5-12

PSL Compiler Warnings. 5-12
Built-in Function Run-Time Error Messages 5-15
BMC Software, Inc., Confidential and Proprietary Information

Diagnosing PSL Program Errors 5-1

PslDebug—Run-Time Error Checking Variable
The PslDebug built-in local variable provides a run-time error checking
and trace facility that detects a variety of common PSL coding errors.
You can enable or disable run-time checking and/or tracing by equating
PslDebug to a numeric value representing 1 or more of 16
error-checking flag bits.

The trace data produced by the PslDebug trace flags is useful in
debugging PSL programs during the initial stages of programming or as a
“pre-debug” before calling the more powerful (and hence more time
consuming) PSL debugger.

The general arrangement of the flags is as follows:

• error checking: 0-128
• tracing: 256-16384

The format of PslDebug within a PSL script is identical to that of any
other PSL variable:

PslDebug = n;

where n is the sum of one or more of the values from Table 5-1 on page
5-3.
BMC Software, Inc., Confidential and Proprietary Information

5-2 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Table 5-1 PslDebug Error Checking Flag Bits (Part 1 of 3)

Value Definition

PslDebug Enable All Error Checking and Tracing

–1

enable all PSL run-time error checking and tracing functions

Setting PslDebug = -1 is equivalent to setting all error checking and tracing flag bits,
or setting PslDebug = 257 (1 + 256 enables all error checking and all tracing flag
bits).

PslDebug Enable/Disable All Error Checking

0 disable all run-time error checking

1

enable all PSL run-time error checking

Setting PslDebug = 1 is equivalent to setting all error checking flag bits.
BMC Software, Inc., Confidential and Proprietary Information

Diagnosing PSL Program Errors 5-3

Numeric Operation Warnings

2

enable warnings when arithmetic operations involve NULL string operands
This check is a stylistic one used to verify that numeric variables are explicitly
initialized to zero rather than defaulting to NULL strings, which are treated as zero in
arithmetic operations.
Example
The expression x+10 will generate this warning when x is the NULL string.

4

enable warnings for arithmetic operations involving nonnumeric operands
Example
The expression “mary” + “john” attempting to numerically add two character strings
will generate this warning.

8

enable warnings for illegal or undefined arithmetic operations
Example
Divide by zero.

Variable Initialization Warnings

16

enable warnings for variables that were not explicitly initialized
This checks for variables that are used before being explicitly equated to a value.
Variables are initialized to the NULL string by default. BMC Software recommends
that you explicitly initialize all variables to a value (even the NULL string) as a matter
of good programming style.

Built-in Function Warnings

32

enable warnings for PSL Version 2.0 built-in functions
This check allows you to suppress warning messages that were not suppressible in
PSL Version 2.0.
Example
A “file not found” for the cat() function will generate this warning.
PslDebug = 32 is the default if PslDebug is not specified to provide the same default
behavior as PSL Version 2.0.

64

enable warnings for PSL Version 3.0 built-in functions
This is a new error check of built-in functions that were not in PATROL Version 2.0.
The errors detected include passing non-numeric arguments when a numeric value is
required, passing a bad argument, or passing the wrong number of arguments to a
printf() function.

128 not used

PslDebug Enable All Tracing

256
enable all PSL run-time tracing. Setting PslDebug = 256 is equivalent to setting all
tracing flag bits

Table 5-1 PslDebug Error Checking Flag Bits (Part 2 of 3)

Value Definition
BMC Software, Inc., Confidential and Proprietary Information

5-4 PATROL Script Language Reference Manual Volume 1—PSL Essentials

You set multiple flag bits by equating PslDebug to the sum of their
values. For example, PslDebug = 44 would enable the following flags:

• arithmetic operations involving nonnumeric operands (4)
• illegal or undefined arithmetic operations (8)
• PSL Version 2.0 built-in functions (32)

whose sum 4 + 8 + 32 is 44.

Function Tracing

512

enable function call tracing
Function call tracing reports which functions are called but does not return
information about the arguments. Function call tracing traces both user-defined and
built-in functions.

1024

enable function argument tracing
Function argument tracing reports the arguments passed to all user-defined or built-in
functions. Function argument tracing requires that function call tracing (PslDebug =
512) also be enabled; that is, PslDebug = 1536 for function argument tracing.

2048

enable function return value tracing
Function return value tracing reports the value returned by calls to all user-defined or
built-in functions.

Variable Tracing

4096

enable variable assignment tracing
Assignment tracing reports the variable name (if available) and the value assigned to
it.

8192
enable errno tracing
The errno tracing reports any nonzero values stored in the PSL errno variable.

Lock Tracing

16384

enable PSL lock tracing
Lock tracing reports the interprocess actions that occur during lock() and unlock()
function processing, including the granting, denying, and releasing of locks.

32768 not used

Table 5-1 PslDebug Error Checking Flag Bits (Part 3 of 3)

Value Definition
BMC Software, Inc., Confidential and Proprietary Information

Diagnosing PSL Program Errors 5-5

errno—Error Return Code Variable

The PSL errno variable is set by various PSL built-in functions to
indicate the reason for a failure. All functions that can potentially set
errno are also required to reset the errno variable to zero and have it
remain zero if the function is successful. Functions that don’t set the
errno variable do not reset it to zero either. This requirement validates
usage styles such as the following:

x = cat("file");
if (errno != 0)
{

Error occurred in cat function
examine errno value for specific error code

}

The user can also write values to the errno variable. However, there
should be little cause to set errno since it is reset by all functions that
set it.

Tip
The errno variable is reset to zero by many built-in functions at the start
of their processing; and in some functions, clearing can occur before
arguments are processed, leading to errno being cleared before being
processed as an argument. Hence, when passing errno as an argument
to a built-in function, BMC Software recommends that you make a copy
in a temporary variable and pass the copy.
BMC Software, Inc., Confidential and Proprietary Information

5-6 PATROL Script Language Reference Manual Volume 1—PSL Essentials

exit_status—System Return Code Variable

The PSL exit_status variable stores the exit status of a process
invoked from a system(), popen("OS",) or execute("OS",) function. The user
cannot write the exit_status variable.

Tip
The popen() function with an OS command type can set the exit_status
variable asynchronously whenever its operating system child process
dies. It is possible (although unlikely) that the popen() function could
set exit_status after a system() or execute() function concludes
but before exit_status is read for the system() or execute() call.

Incompatibilities with the C Programming
Language

There are features found in the C programming language that are not
supported by and not compatible with PSL. This section lists known
incompatibilities.

Operators && and ||

Difference: PSL does not perform short-circuit processing of the && and || operators.

C Action: The && and || functions short-circuit in standard C meaning that
evaluation stops with the first condition that establishes an outcome for
the statement. Some programmers use this feature to construct statements
that depend on the left-to-right sequential evaluation of the conditions.

PSL Action: PSL always evaluates all conditions in a statement using && and ||
operators. Evaluation of all conditions may cause unexpected results in
statements that depend on a left-to-right sequential evaluation and
short-circuit.
BMC Software, Inc., Confidential and Proprietary Information

Diagnosing PSL Program Errors 5-7

Prefix and Postfix Operators ++ and --

Difference: PSL does not distinguish between prefix and postfix operators.

C Action: Appending ++ or—as a prefix instructs the program to increment or
decrement the variable then test the condition, while appending ++
or—as a postfix instructs the program to test the condition before
incrementing or decrementing the variable.

PSL Action: PSL treats both prefix and postfix operators as prefix operators. Treating
postfix operators as if they were prefix operators may cause unexpected
results in statements that depend on postfix operators.

Break and Continue Statements

Difference: PSL supports the function but not the syntax of the break and
continue statements. PSL replaces the break statement with the last
statement, and the continue statement with the next statement.

PSL Action: PSL treats the C break and continue statements as statements that
evaluate the variable name break or continue and produce no output or
effect within the PSL program.

Common PSL Coding Errors
This section describes common PSL coding errors that result in PSL
compiler, interpreter, or run-time errors.
BMC Software, Inc., Confidential and Proprietary Information

5-8 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Character Strings Interpreted as Numbers

Problem: Errors can occur when numeric operations are applied to character
strings whose first character is a digit or minus sign because PSL will
evaluate these character strings as numbers.

Reason: Before PSL performs an operation, it must determine whether the
operands are numeric or character. To make the determination, PSL
performs one of the following tests:

• For relational operators, PSL tests that both operands consist entirely
of digits, a period, and/or a minus sign. Otherwise, both operands are
character type.

• For arithmetic operators, PSL tests only that the first character of
each operand is a digit or minus sign. Otherwise, both operands are
character type that generates a run-time warning.

The run-time warnings perform the same check as the arithmetic
operators.

Note
These features remain for compatibility with previous releases of
PATROL.

Arithmetic operators identify the character string “10th May” as the
number 10 while relational operators correctly identify it as a character
string. Its use as an arithmetic operand will not generate a run-time
warning.

Solution: Be aware that character strings whose first character is a valid numeric
representation can cause unexpected results in numeric operations that
will not be detected by PSL diagnostics. Avoid the use of such strings.
BMC Software, Inc., Confidential and Proprietary Information

Diagnosing PSL Program Errors 5-9

Floating Point Numbers Interpreted as Character Strings

Problem: PSL interprets floating point numbers with a leading decimal point as
character strings.

Reason: Before performing a numeric operation, PSL evaluates both operands to
verify that they are numbers. PSL tests only that the first character of
each operand is a digit or minus sign. Upon detecting that the first
character is a decimal point, PSL identifies the operator as a character
string and returns a warning.

PSL identifies the operand 0.33 as a number and the operand .33 as a
character string.

Solution: Begin each floating point number with a digit or a minus sign.

Character Strings Interpreted as Variable Names

Problem: PSL interprets character strings that are not enclosed in double quotation
marks as variable names.

Reason: The PSL language requires that all character strings appearing in
statements and function calls be enclosed in double quotation marks to
identify them as character strings.

Improperly identified character strings will not generate compiler errors
but may generate warnings about uninitialized variables if the string is
not equivalent to a variable name initialized elsewhere in the program.

PSL interprets the statements get(Dev); and get(RDB/Dev); as requests for
the values of the user variables Dev and RDB/Dev. PSL interprets the
statements get("Dev") and get("RDB/Dev") as requests for the PSL object
variables Dev and RDB/Dev.

Solution: Enclose all strings in double quotation marks. Enable PslDebug flag 16
to catch variable names that were not explicitly initialized within the PSL
program.
BMC Software, Inc., Confidential and Proprietary Information

5-10 PATROL Script Language Reference Manual Volume 1—PSL Essentials

PSL Functions That Do Not Modify Their Arguments

Problem: Some PSL functions do not modify their arguments, and their return
values are lost if not explicitly saved in the PSL program.

Reason: Some PSL functions return modified copies of their arguments as return
values, preserving the integrity of the original arguments.

For example, the PSL function call trim(text,"\t"); returns a copy of the
character string variable text with all tab characters removed. Without an
explicit destination and because the trim function cannot modify its test
argument, the return value is discarded before executing the next PSL
statement. Alternately, the PSL function call text=trim(text,”\t”); returns the
modified copy of string variable text and stores it back into text.

PSL functions that do modify their arguments are those that perform
command execution and PSL object manipulation, including the
following:

• create()

• destroy()

• system()

• execute()

• set()

• log()

• close()

• print()

• popen()

• write()

The return values for these functions generally indicate the completion
status of the operation and may not need to be retained.

Solution: Become familiar with the descriptions of the PSL built-in functions.
Those that return more than a completion status value probably do not
modify their arguments and thus require that you explicitly save the
return value if it is to be available to other statements within the program.
BMC Software, Inc., Confidential and Proprietary Information

Diagnosing PSL Program Errors 5-11

Functions That Do Not Write to the Console Window

Problem: PSL built-in functions such as grep(), cat(), or get_var() do not display their
return values in the system console window.

Reason: PSL built-in functions return their values to the PSL program. To display
those values outside the program, they must be printed.

For example, grep(), cat(), and get_var() produce no output to the system
console window but print(grep()), print(cat()), and print(get_var()) will print the
specified function return values.

Solution: To display function return values in the system console window, make
those functions arguments of the print() function.

PSL Compiler Warnings

The PSL compiler offers a number of compiler checks for common PSL
coding errors. These warnings can be ignored because they do not
prevent successful compilation and execution of the PSL program.
Currently, these warnings are only available through the Check Syntax
menu entry in the PSL editor on the PATROL Console.

line_number Assignment in if statement

Problem: The assignment operator “=” appeared in an if statement condition.

Reason: The usual assignment operator within an if statement condition is the test
equal operator “==”. Using “=” instead of “==” may be a useful coding
technique or may indicate an error.

Solution: Verify that the if statement condition operator is the desired one.
BMC Software, Inc., Confidential and Proprietary Information

5-12 PATROL Script Language Reference Manual Volume 1—PSL Essentials

line_number Statement has no effect

Problem: The PSL statement is a NULL effect statement without assignment,
increment, or side-effect function calls.

Reason: The statement may produce an effect during execution but does not
transmit that effect to any other part of the PSL program, which is the
reason the statement is considered a NULL effect statement. An example
with operators is x+2; which should probably be x+=2;. Another
example of errors with function calls is trim(); which should probably
be var=trim(); because the returned value is unused.

Solution: Examine the statement and modify it to give it an effect within the
program.

line_number Variable used but not set

Problem: A local PSL variable has been used without ever having been initialized
to a value.

Reason: Flags within the PslDebug variable allow PSL to flag all local variables
whose first appearance in a program is not as the recipient of an
assignment statement. When a variable is created, its value defaults to the
NULL string. This message is warning you that the variable in question
has not been previously defined within the PSL program.

Solution: Ensure that the variable and its NULL string value are desired within the
statement.
BMC Software, Inc., Confidential and Proprietary Information

Diagnosing PSL Program Errors 5-13

line_number Variable set but not used

Problem: A variable was defined but not otherwise used in the PSL program.

Reason: A variable was created when it was assigned a value other than the
default NULL string value, but the variable was never used within the
PSL program. A message that a variable was used but not set often
indicates that a typographical error occurred and that PSL created two
variables, one with the correct name and the other with the misspelled
one.

Solution: Check to see why the variable was never used within the program. If it is
not needed, remove it. If it is a typographical error, correct it.

line_number Undefined backslash escape in string constant

Problem: An undefined escape sequence appeared in a PSL character string.

Reason: The correct PSL escape sequences are \A through \Z , \t, \n, \r, and \b.
PSL ignores and discards any other escape sequences that it detects in a
character string. For example, PSL changes the string A\zB to the string
AB because \z is not a valid escape character.

Solution: Verify the presence of the escape character in the character string and
either modify it to be a valid PSL escape character or remove it.

line_number Float constant starts with ‘.’

Problem: A floating point number begins with a decimal point.

Reason: Floating point numbers within PSL must begin with either a minus sign
or a digit in order for PSL to correctly interpret them as numbers in
numeric calculations. PSL will interpret a number that begins with a
decimal point as a character string and will treat it as a character string in
numeric operations.

Solution: Prefix each floating point number with 0 or a minus sign to ensure it is
properly interpreted by PSL.
BMC Software, Inc., Confidential and Proprietary Information

5-14 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Built-in Function Run-Time Error Messages
Execution of a PSL script can cause various run-time error messages
from the built-in variables. These messages indicate serious PSL script
problems that cannot be suppressed. This section lists the error messages
and explains the most likely cause for the error.

The first word in the error message indicates the built-in function that
generated the message.

BMCcat: filename -- error_message

Reason: The cat() function had problems opening the file such as file not found or
permission denied. The system error message is reported using the PSL
errno variable.

BMCcat: filename -- read error after number bytes

Reason: The cat() function read operation failed after number bytes were read.

BMCcreate: unknown application application

Reason: The create() function could not locate application in the computer symbol
table.

BMCcreate: __type__ missing in object object

Reason: The create() function could not find the special built-in variable __type__
in the symbol table.

BMCcreate: object object is not an application

Reason: The create() function determined that the object being created is not an
application. The create() function cannot create computer instances.
BMC Software, Inc., Confidential and Proprietary Information

Diagnosing PSL Program Errors 5-15

BMCcreate: __self__ missing in object object

Reason: The create() function could not find the special built-in variable __self__
in the symbol table.

BMCcreate: cannot create instance instance of application application

Reason: The create() function discovered that either the name application is bad or
that too many instances are already registered for application.

BMCcreate: invalid initial state state for instance instance of application application

Reason: The create() function discovered that the state passed to it is not one of the
valid states: ALARM, OK, WARN, or OFFLINE.

BMCcreate: empty symbol table in object object

Reason: The create() function discovered that the symbol table for object is empty,
as would be the case if object were the parent of a computer instance.
The create() function cannot create computer instances.

BMCchange_state: unknown object object

Reason: The change_state() function could not find object whose state was to
change.

BMCchange_state: __type__ missing in object object

Reason: The change_state() function could not find the special built-in variable
__type__ in the symbol table.

BMCchange_state: object object is not an application instance

Reason: The change_state() function attempted to change state of a computer
instance or other non-application instance object.
BMC Software, Inc., Confidential and Proprietary Information

5-16 PATROL Script Language Reference Manual Volume 1—PSL Essentials

BMCchange_state: __self__ missing in object object

Reason: The change_state() function could not find the special built-in variable
__self__ in the symbol table.

BMCchange_state: empty symbol table in object object

Reason: The change_state() function discovered that the symbol table for object is
empty, as would be the case if object were the parent of a computer
instance.

BMCdestroy: unknown object object

Reason: The destroy() function could not find object that it was to destroy.

BMCdestroy: __type__ missing in object object

Reason: The destroy() function could not find the special built-in variable
__type__ in the symbol table.

BMCdestroy: object object is not an application instance

Reason: The destroy() function attempted to destroy a computer instance or other
non-instance object. The name object must be an application name.

BMCdestroy: __self__ missing in object object

Reason: The destroy() function could not find the special built-in variable
__self__ in the symbol table.

BMCdestroy: empty symbol table in object object

Reason: The destroy() function discovered that the symbol table for object is empty,
as would be the case if object were the parent of a computer instance.
BMC Software, Inc., Confidential and Proprietary Information

Diagnosing PSL Program Errors 5-17

BMCexecute: cannot find instance instance

Reason: The execute() command failed to find instance in the symbol table and so
could not execute a command against it.

BMCexecute: cannot get type of object object

Reason: The execute() command could not find the special built-in variable
__type__ in the symbol table.

BMCexecute: object object is not an application instance or computer

Reason: The execute() command discovered that object is neither an application nor
a computer instance and could not execute a command against it.

BMCexecute: cannot get instance ptr of object object

Reason: The execute() command could not find the special built-in variable
__self__ in the symbol table.

BMCexecute: couldn’t execute command_type command

Reason: The execute() command was unable to create either the internal run-time
cell or the operating system process to execute the command. Possible
causes include the following:

• invalid user ID
• bad application instance
• PSL program did not compile, or
• PSL process creation failed

BMCexecute: couldn’t create channel

Reason: The execute() function encountered an internal PSL problem. Contact your
BMC Software Product Support representative for assistance.
BMC Software, Inc., Confidential and Proprietary Information

5-18 PATROL Script Language Reference Manual Volume 1—PSL Essentials

BMCgrep: bad regular expression -- regular_expression

Reason: The grep() function discovered that the regular expression argument
passed to it is either not valid or too long.

BMCget_vars: unknown object object

Reason: The get_vars() function either:

• could not find object; or
• discovered that object does not have variables (simple variables do

not have variables)

BMCin_transition: unknown object object

Reason: The in_transition() function could not find object on which it was to act.

BMCin_transition: __type__ missing in object object

Reason: The in_transition() function could not find the special built-in variable
__type__ in the symbol table.

BMCin_transition: object object is not an application instance

Reason: The in_transition() function attempted to apply its timer to a computer
instance or other nonapplication instance object.

BMCin_transition: __self__ missing in object object

Reason: The in_transition() function could not find the special built-in variable
__self__ in the symbol table.

BMCin_transition: empty symbol table in object object

Reason: The in_transition() function discovered that the symbol table for object is
empty as would be the case if it were the parent of a computer instance.
BMC Software, Inc., Confidential and Proprietary Information

Diagnosing PSL Program Errors 5-19

BMCread: bad channel# channel_number

Reason: The read() function has discovered that channel_number is no longer valid
for the PSL process. Possible causes include

• a bad channel number (for example, a negative number)
• a channel already closed using the close function

BMCreadln: bad channel# channel_number

Reason: The readln() function has discovered that channel_number is no longer
valid for the PSL process. Possible causes include:

• a bad channel number (for example, a negative number)
• a channel already closed using the close function

BMCwrite: bad channel# channel_number

Reason: The write() function has discovered that channel_number is no longer
valid for the PSL process. Possible causes include:

• a bad channel number (for example, a negative number)
• a channel already closed using the close function.

BMCvariable: non-modifiable data type

Reason: The set() function attempted to set variable in the PATROL hierarchy that
has write permission but is not of a type that the set() function is allowed
to modify. For example, this error occurs if variable is another subobject
such as an application or instance.

BMCvariable: write permission denied

Reason: The set() function attempted to set a read-only built-in variable in the
PATROL hierarchy.
BMC Software, Inc., Confidential and Proprietary Information

5-20 PATROL Script Language Reference Manual Volume 1—PSL Essentials

6

6zz
6

Internationalized PSL Scripts 6

This chapter discusses the built-in functions that you can use to write
internationalized PSL scripts. The following topics are discussed:

Introduction . 6-2
Locale and Codeset . 6-2
Locale Categories. 6-3
set_locale() . 6-4
CTYPE Locale Category . 6-5
MESSAGES Locale Category . 6-5
CODECVT Locale Category . 6-6
TIME Locale Category . 6-7
Multiple-Byte Characters. 6-7

PSL International Functions . 6-7
ID-Based Messaging Functions . 6-8

Other PSL Functions . 6-9
Command Execution Functions . 6-9
Input and Output Functions . 6-10
File Handling Functions. 6-11
String Functions . 6-11
Set Functions . 6-12
Date and Time . 6-12

Compatibility with Noninternationalized PATROL Agents 6-13
Example Code: Verify the Version of the PATROL Agent 6-13
Example Code: Conditionally Use an International Function . . . 6-15
BMC Software, Inc., Confidential and Proprietary Information

Internationalized PSL Scripts 6-1

Introduction
Use this chapter if you need to write PSL scripts that perform these tasks:

• Run on two or more computer platforms of different languages.

• Read and write multilingual characters and formats such as date,
time, and currency.

• Exchange information between computer platforms of different
languages.

An internationalized PSL script performs the tasks listed above. A
noninternationalized script supports only a single language.

Locale and Codeset

Locale is information that PATROL uses to read and write
language-specific text. A locale includes information such as sort order,
date and time formats, special characters, and currency formats. A locale
also includes a codeset, which is a group of rules that the PATROL Agent
uses to interpret the ones and zeros of a text file into characters. The
eucJP codeset is an example of a Japanese codeset name.

A locale name follows the format language_country.codeset. The
language code consists of two lowercase letters that are defined by ISO
639, country consists of two uppercase letters that are defined by ISO
3166, and codeset, as previously discussed, is the name of the codeset.

Table 6-1 shows the locale names that PATROL supports.

Table 6-1 Supported Locale Names (Part 1 of 2)

Locale Name Language

C English

ja_JP.CP932 Japanese

ja_JP.eucJP Japanese

ja_JP.SJIS Japanese
BMC Software, Inc., Confidential and Proprietary Information

6-2 PATROL Script Language Reference Manual Volume 1—PSL Essentials

The locale and codeset registries list additional locale and codeset names
for mapping purposes. The names listed in Table 6-1 are currently the
only ones that you can use with PSL functions. You can find the
registries at the following directory paths:

• PATROL_HOME/lib/nls/locale/loc_registry

• PATROL_HOME/lib/nls/charmaps/cs_registry

Locale name plays an important role in writing internationalized PSL
scripts. If you read, write, or display text, you must verify that you are
using the right locale to process the text. For example, if your script
needs to read a text file encoded with the ja_JP.eucJP locale name, you
must verify that PATROL is configured to read the file with the
ja_JP.eucJP locale.

Locale Categories

A locale category tells PATROL which locale to use with specific
functions. The TIME locale category, for example, affects the following
functions: asctime(), date(), and convert_locale_date(). These functions
are referred to as TIME functions. If you set TIME to the ja_JP.SJIS
locale, the TIME functions read, write, and display text in the ja_JP.SJIS
locale.

Table 6-2 lists the locale categories.

ko_KR.eucKR Korean

zh_CN.gb Simplified Chinese

zh_TW.big5 Traditional Chinese

zh_TW.eucTW Traditional Chinese

Table 6-1 Supported Locale Names (Part 2 of 2)

Locale Name Language
BMC Software, Inc., Confidential and Proprietary Information

Internationalized PSL Scripts 6-3

set_locale()

The set_locale() function is the tool that you use to check and change the
locale of a locale category. For example, asctime() can return a date or
time in any locale. If you want it to return the date in the ja_JP.eucJP
locale, use set_locale() to verify the TIME locale category. If set_locale()
says that TIME is set to ja_JP.SJIS, use set_locale() again to change the
locale of TIME to ja_JP.eucJP. For more information about set_locale(),
see PATROL Script Language Reference Manual Volume 2—PSL
Functions.

Table 6-2 PSL Locale Categories

Category Purpose

CTYPE Specifies the locale of the agent. CTYPE functions manipulate text strings. See
“CTYPE Locale Category” on page 6-5.

Functions: code_cvt(), grep(), index(), length(), lines(), ntharg(), nthargf(),
nthline(), nthlinef(), num_bytes(), rindex(), substr(), tail(), tolower(), toupper(), trim()

MESSAGES Specifies the locale that PATROL uses to display messages. MESSAGES functions
display messages to the user. See “MESSAGES Locale Category” on page 6-5.

Default Locale: Same as CTYPE

Functions: msg_check(), msg_get_format(), msg_get_severity(), msg_printf(),
msg_sprintf(), dcget_text(), dget_text(), get_text(), text_domain()

TIME Specifies the locale of the date and time format that you want to use with a PSL
function. TIME functions read, write, format, or parse a date and time string. See
“TIME Locale Category” on page 6-7.

Default Locale: Same as CTYPE

Functions: asctime(), date(), convert_locale_date()

CODECVT Specifies the locale of text that you want to write, read, or display. CODECVT
functions execute commands and read and write text. See “CODECVT Locale
Category” on page 6-6.

Default Locale: Same as CTYPE

Functions: cat(), execute(), fopen(), popen(), read(), readln(), system, write()
BMC Software, Inc., Confidential and Proprietary Information

6-4 PATROL Script Language Reference Manual Volume 1—PSL Essentials

CTYPE Locale Category

The CTYPE locale category specifies the native locale of the PATROL
Agent. You can use set_locale() to read the locale of CTYPE, but you
cannot change it. CTYPE is the only nonwritable locale category.

The agent can process only text that is in the locale of the CTYPE locale
category so all string functions follow the rules of the CTYPE locale.
Using the sort() function, for example, sorts a list of strings as they exist
in the CTYPE locale.

The value of CTYPE also serves as the default value of the other locale
categories. When a PSL script executes, the initial value of the other
locale categories is equal to the value of CTYPE.

Note
CTYPE PSL functions support multiple-byte characters. See
“Multiple-Byte Characters” on page 6-7.

MESSAGES Locale Category

The MESSAGES locale category specifies the locale that PATROL uses
to display messages to the user. An internationalized PSL script does not
display messages directly to the user. Instead, the script has a message
catalog for each locale that it supports. When the script displays a
message, it uses an ID number to retrieve the message string from a
catalog and displays the message to the user. The locale of MESSAGES
tells PATROL which message catalog to use. For example, if the user
reads the Chinese Simplified locale, the script verifies whether
MESSAGES is set for the Chinese Simplified locale before displaying
any messages.
BMC Software, Inc., Confidential and Proprietary Information

Internationalized PSL Scripts 6-5

CODECVT Locale Category

The CODECVT locale category specifies the locale of input and output
text. Input text is text that PATROL reads from a channel or file, but it is
also text that a command returns. Output text is text that PATROL writes
to a channel or file.

Codeset Conversion

PATROL converts the codeset of any text identified by the CODECVT
locale category if it does not match the locale of the agent (or CTYPE
locale category). The conversion process is nearly automatic. The only
step that you must perform in the conversion process is to verify that the
CODECVT locale category is set correctly before using a CODECVT
function.

Note
You can only convert between codesets that represent the same language
such as converting between ja_JP.eucJP and ja_JP.SJIS for Japanese or
between zh_TW.big5 and zh_TW.eucTW for Chinese.

For example, say that a PSL script exists on a different computer from
the PATROL Agent. The operating system that hosts the script uses the
ja_JP.SJIS locale, and the operating system for the agent uses
ja_JP.eucJP. When the script executes the system() function, it returns an
operating system message in the ja_JP.SJIS locale. In this example, you
need to verify that the CODECVT locale category is set for ja_JP.SJIS
before using system(). PATROL automatically converts the message
string to the CTYPE or ja_JP.eucJP locale so that the agent can read the
message.
BMC Software, Inc., Confidential and Proprietary Information

6-6 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Registered Locale for a Channel

The popen() and fopen() functions play a special role in locale
conversion. These functions open a channel through which PATROL can
input and output text. When you use popen() or fopen() to open a
channel, the locale of the CODECVT locale category becomes the
registered locale for the channel. A registered locale means that you
cannot change the locale of the channel, but you can close the channel
and open a new one with a different registered locale. If the registered
locale is different from the CTYPE locale, PATROL automatically
converts text during read and write operations to the channel.

TIME Locale Category

The TIME locale category specifies the date and time format of a text
string that is returned from one of the following PSL functions:
asctime(), date(), and convert_locale_date().

Multiple-Byte Characters

Generally, English language codesets use a single byte to represent a
character. Some international codesets need more than one byte to
represent a single character because many international alphabets have a
very large number of characters. Any character that requires more than
one byte is a multiple-byte character. All PSL built-in string functions
support multiple-byte characters. You can, for example, use multiple-byte
characters in the following types of string operations: string comparisons,
sorts, and range expressions using regular expressions.

PSL International Functions
The functions in Table 6-3 can help you write internationalized PSL
scripts. For more information about any PSL function, see PATROL
Script Language Reference Manual Volume 2—PSL Functions.
BMC Software, Inc., Confidential and Proprietary Information

Internationalized PSL Scripts 6-7

ID-Based Messaging Functions

The ID-based messaging functions in Table 6-3 require that you use a
message catalog. The following PATROL manuals describe how to create
a message catalog: PATROL Console for Unix User Guide and PATROL
Console for Microsoft Windows User Guide Customizing PATROL
Volume 3.

To use an existing ID-based message catalog, you must know the name
of the .lib file for the catalog. In internationalized scripts, use the requires
statement to identify the .lib file and call an INIT function based on
the .lib name. For example, if the name of the .lib is example.lib, include
the following lines of code:

requires "example.lib";
. . .
INIT_example();

Table 6-3 PSL International Functions

Function Definition

General International Functions

code_cvt()
convert_locale_date()
num_bytes()
set_locale()

convert a string from one codeset to another
change the format of a date string
return the length of a string in bytes
set or get the value of a locale category

ID-Based Messaging Functions

msg_check()
msg_get_format()
msg_get_severity()
msg_printf()
msg_sprintf()

check the validity of a message ID and message catalog
return the format information for a message
return a integer that explains the severity of a message
print message text formatted by information from a catalog
return message text formatted by information from a catalog

String-Based Messaging Functions

dcget_text()
dget_text()
get_text()
text_domain()

return message text by defining domain and category
return message text by defining only domain
return message text
set or get the current name of the domain
BMC Software, Inc., Confidential and Proprietary Information

6-8 PATROL Script Language Reference Manual Volume 1—PSL Essentials

The example catalog contains the following information:

VENDOR_ID 1
VENDOR BMC Software
TOOL_ID 23
TOOL PATROL Demo
VERSION 1.0
DATE 13-Mar-1997
#--
ID 145 DEMO_HELLO INFO CURRENT
MESSAGE "Hello World"

The requires statement makes the message catalog available to your
script. The INIT function allows you to reference either the message ID
number or message ID name. Without this function, you can use only the
ID number. In the preceding example, executing the INIT function makes
the msg_check(DEMO_HELLO) command equal to msg_check(145).

Other PSL Functions

Unlike the functions in Table 6-3 on page 6-8, the functions described in
this section existed before internationalized versions of PATROL were
available. These functions have little to do with internationalized PSL
development, but each function has a feature or two that supports
internationalization. This section briefly describes these features.

Command Execution Functions

Table 6-4 lists the command execution functions that have
internationalization features.
BMC Software, Inc., Confidential and Proprietary Information

Internationalized PSL Scripts 6-9

Input and Output Functions

Table 6-5 lists the input and output functions that have
internationalization features.

Table 6-4 International Features of Command Execution Functions

Function Description

execute() You should set the CODECVT locale category to match the locale of the command
output. If CODECVT differs from CTYPE, this function converts the locale and
returns text in CTYPE.

fopen() You should set the CODECVT locale category to match the locale of the text data
in the file. This function opens a channel that has a registered locale equal to
CODECVT. During subsequent read and write operations, PATROL automatically
converts the locale when necessary.

popen() You should set the CODECVT locale category to match the locale of the text data
in the channel. This function opens a channel that has a registered locale equal to
CODECVT. During subsequent read and write operations, PATROL automatically
converts the locale when necessary.

system() You should set the CODECVT locale category to match the locale of the command
output. If CODECVT differs from CTYPE, this function converts the locale and
returns text in CTYPE.

Table 6-5 International Features of Input and Output Functions

Function Description

printf()
sprintf()

The printf() and sprintf() functions support specification of the converted argument
position.

read() If the registered locale for the channel differs from CTYPE, read() converts the
locale and returns text in the CTYPE locale. The popen() and fopen() functions
register the locale for a channel. The size parameter specifies the number of bytes
that the function reads from the channel.
Note: This description differs from the PATROL 3.2.09i version of read().

readln() If the registered locale for the channel differs from CTYPE, readln() converts the
locale and returns text in the CTYPE locale. The popen() and fopen() functions
register the locale for a channel.

write() If the registered locale for the channel differs from CTYPE, write() converts the
locale and writes text data to the channel in the locale for the channel.
The popen() and fopen() functions register the locale for a channel.
BMC Software, Inc., Confidential and Proprietary Information

6-10 PATROL Script Language Reference Manual Volume 1—PSL Essentials

File Handling Functions

Table 6-6 lists the file-handling functions that have internationalization
features.

String Functions

Table 6-7 lists the string functions that have internationalization features.

Table 6-6 International Features of File Handling Functions

Function Description

cat() You should set the CODECVT locale category to match the locale of the text data
in the file. If CODECVT differs from CTYPE, this function converts the locale and
returns text in CTYPE.

fseek() The offset parameter of the fseek() function specifies the number of bytes.
Note: In PATROL 3.2.09i, offset specifies the number of characters (including
multiple-byte characters).

ftell() The ftell() function returns file position as the number of bytes from the beginning of
the file.
Note: In PATROL 3.2.09i, this function returns the number of characters (including
multiple-byte characters).

Table 6-7 International Features of String Functions (Part 1 of 2)

Function Description

grep() The grep() function supports multiple-byte characters in the regular-expression and
text parameters. It also supports ranges expression using code point ordering.

index()
rindex()

The index() and rindex() functions support multiple-byte characters in the text and
string parameters. These functions return position counts in characters.

length() The length() function returns the number of characters (including multiple-byte
characters).

lines()
nthline()
nthlinef()
tail()

These functions support multiple-byte characters in the text and separator
parameters.

ntharg()
nthargf()

The ntharg() and nthargf() functions support multiple-byte characters in the text,
delimiters and separator parameters.
BMC Software, Inc., Confidential and Proprietary Information

Internationalized PSL Scripts 6-11

Set Functions

Table 6-8 lists the set functions that have internationalization features.

Date and Time

Table 6-9 lists the date and time functions that have internationalization
features.

substr() The substr() function supports multiple-byte characters in the text parameter. The
start and length parameters specify the number of characters.

tolower()
toupper()

The tolower() and toupper() functions use the locale of the CTYPE locale category
to change the case of text.

trim() The trim() function supports multiple-byte characters in the str and chars
parameters.

Table 6-8 International Features of Set Functions

Function Description

sort() The sort() function supports multiple-byte characters in list element strings using
code point ordering. The position parameter specifies the position in terms of the
number of characters from the beginning of the list.

difference()
intersection()
subset()
union()
unique()

These functions support multiple-byte characters in the element strings.

Table 6-9 International Features of Date and Time Functions

Function Description

asctime()
date()

The asctime() and date() functions use a default date and time format that is
determined by the locale of the TIME locale category.

Table 6-7 International Features of String Functions (Part 2 of 2)

Function Description
BMC Software, Inc., Confidential and Proprietary Information

6-12 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Compatibility with Noninternationalized PATROL
Agents

A PATROL Agent with a version number prior to 3.4.11 does not support
international PSL functions (Table 6-3 on page 6-8). Before using these
functions, you must verify that the version of the agent is 3.4.11 or later.
You can use the examples in this section to create scripts that use
international PSL functions in a way that is compatible with
noninternationalized versions of the agent.

Example Code: Verify the Version of the PATROL Agent

The example code in this section creates the PatrolVersionCheck()
function, which evaluates the version number of the PATROL Agent. The
PatrolVersionCheck() function returns a value greater than 0 if the
version number indicates that the agent can run international PSL
functions. Otherwise, it returns a 0.
BMC Software, Inc., Confidential and Proprietary Information

Internationalized PSL Scripts 6-13

export function i18n_set_locale;
function PatrolVersionCheck()
{
i18n_version = 0;
patrol_version = substr(get("/patrolVersion"), 2, 1);
patrol_release = ntharg(get("/patrolVersion"), 2,
".");
patrol_release2 = ntharg(get("/patrolVersion"), 3,
".");
patrol_release3 = ntharg(get("/patrolVersion"), 4,
".");

if(patrol_version == 3)
{

if ((patrol_release == 4) && (patrol_release2 >=
11))

{
i18n_version = 1;

}
if (patrol_release > 4)
{

i18n_version = 1;
}
if ((patrol_release == 2) && (patrol_release2 == 9)

&&
(patrol_release3 >=1))

 {

i18n_version = 2;
}

}

if(patrol_version > 3)
{

i18n_version = 1;
}

return i18n_version;
}

BMC Software, Inc., Confidential and Proprietary Information

6-14 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Example Code: Conditionally Use an International Function

The example code in this section creates the i18n_set_locale() function to
provide a way of using set_locale() that is compatible with
noninternationalized versions of the PATROL Agent. The
i18n_set_locale() function determines whether the agent can run
international PSL functions by using the PatrolVersionCheck() function
(“Example Code: Verify the Version of the PATROL Agent” on page
6-13). If the agent can run these functions, it runs the set_locale()
function. Otherwise, it returns a NULL string.

function i18n_set_locale(cat,value)
{
 if (PatrolVersionCheck() >0)
 {
 return set_locale(cat,value);
 }
 else
 {
 return "";
 }
}

BMC Software, Inc., Confidential and Proprietary Information

Internationalized PSL Scripts 6-15

BMC Software, Inc., Confidential and Proprietary Information

6-16 PATROL Script Language Reference Manual Volume 1—PSL Essentials

A

A
A

errno Return Values A

This appendix lists the values returned by the PSL errno variable.
Table A-1 lists the numeric return value of the errno variable and its
corresponding message text.

Table A-1 PSL errno Values (Part 1 of 6)

Numeric Value Message

0 E_PSL_NO_ERROR

1 E_PSL_CAT_MEMORY_FAILURE

2 E_PSL_CAT_READ_ERROR

3 E_PSL_CHANGE_STATE_EMPTY_SYMBOL_TABLE

4 E_PSL_CHANGE_STATE_INTERNAL_FAILURE

5 E_PSL_CHANGE_STATE_INVALID_STATE

6 E_PSL_CHANGE_STATE_NOT_APPLICATION

7 E_PSL_CHANGE_STATE_UNKNOWN_OBJECT

8 E_PSL_CLOSE_BAD_CHANNEL

9 E_PSL_CREATE_ALREADY_EXISTS

10 E_PSL_CREATE_BAD_STATE

11 E_PSL_CREATE_CANNOT_CREATE

12 E_PSL_CREATE_EMPTY

13 E_PSL_CREATE_EMPTY_SYMBOL_TABLE

14 E_PSL_CREATE_INTERNAL_FAILURE

15 E_PSL_CREATE_INACTIVE_APPLICATION
BMC Software, Inc., Confidential and Proprietary Information

errno Return Values A-1

16 E_PSL_CREATE_NOT_APPLICATION

17 E_PSL_CREATE_UNKNOWN_APPLICATION

18 E_PSL_CREATE_SUPPRESSED

19 E_PSL_DESTROY_EMPTY_SYMBOL_TABLE

20 E_PSL_DESTROY_INTERNAL_FAILURE

21 E_PSL_DESTROY_NOT_APPLICATION

22 E_PSL_DESTROY_UNKNOWN_OBJECT

23 E_PSL_EXECUTE_BAD_INSTANCE

24 E_PSL_EXECUTE_CANNOT_CREATE_CHANNEL

25 E_PSL_EXECUTE_CANNOT_EXECUTE

26 E_PSL_EXECUTE_INTERNAL_FAILURE

27 E_PSL_EXECUTE_NOT_IMPLEMENTED

28 E_PSL_EXECUTE_NOT_INSTANCE

29 E_PSL_FILE_CANNOT_OPEN

30 E_PSL_FILE_NOT_FOUND

31 E_PSL_FILE_READ_ERROR

32 E_PSL_FILE_SECURITY_FAILED

33 E_PSL_FILE_STAT_FAILED

34 E_PSL_FOPEN_BAD_MODE

35 E_PSL_FOPEN_CANNOT_CREATE_CHANNEL

36 E_PSL_FOPEN_CANNOT_OPEN_FILE

37 E_PSL_FOPEN_FILE_NOT_FOUND

38 E_PSL_FOPEN_STAT_FAILED

39 E_PSL_GETENV_NOT_FOUND

40 E_PSL_GET_CHAN_INFO_BAD_CHANNEL

41 E_PSL_GET_NOT_FOUND

42 E_PSL_GET_OBJECT

43 E_PSL_GET_VARS

44 E_PSL_GREP_BAD_REGEXP

Table A-1 PSL errno Values (Part 2 of 6)

Numeric Value Message
BMC Software, Inc., Confidential and Proprietary Information

A-2 PATROL Script Language Reference Manual Volume 1—PSL Essentials

45 E_PSL_IN_TRANSITION_EMPTY_SYMBOL_TABLE

46 E_PSL_IN_TRANSITION_INTERNAL_FAILURE

47 E_PSL_IN_TRANSITION_NOT_APPLICATION

48 E_PSL_IN_TRANSITION_UNKNOWN_OBJECT

49 E_PSL_PRINTF_FORMAT

50 E_PSL_PRINTF_STAR

51 E_PSL_PRINTF_TOO_FEW

52 E_PSL_PROC_EXISTS_BAD

53 E_PSL_READLN_BAD_CHANNEL

54 E_PSL_READ_BAD_CHANNEL

55 E_PSL_READ_FAILED

56 E_PSL_READ_FAILED_MEMORY

57 E_PSL_READLN_TRUNCATED

58 E_PSL_SET_NON_MODIFIABLE

59 E_PSL_SET_SYMBOL_TABLE

60 E_PSL_SET_WRITE_PERMISSION

61 E_PSL_WRITE_BAD_CHANNEL

62 E_PSL_WRITE_CHANNEL_CLOSED

63 E_PSL_WRITE_FAILED

64 E_PSL_WRITE_READ_ONLY

65 E_PSL_BAD_UNLOCK

66 E_PSL_BAD_UNLOCK_NOT_OURS

67 E_PSL_BAD_LOCK_WAITING

68 E_PSL_EDOM

69 E_PSL_ERANGE

70 E_PSL_FOPEN_BAD_CHMOD

71 E_PSL_FOPEN_BAD_CHOWN

72 E_PSL_FOPEN_BAD_ACCOUNT

73 E_PSL_PRINTF_LARGE_ARGUMENT

Table A-1 PSL errno Values (Part 3 of 6)

Numeric Value Message
BMC Software, Inc., Confidential and Proprietary Information

errno Return Values A-3

74 E_PSL_SORT_BAD_MODE

75 E_PSL_HISTORY_BAD_OBJ

76 E_PSL_HISTORY_NOT_PARAM

77 E_PSL_HISTORY_NO_RTCELL

78 E_PSL_HISTORY_NO_INFO

79 E_PSL_HISTORY_BAD_FORMAT

80 E_PSL_FSEEK_PIPE_CHANNEL

81 E_PSL_FSEEK_BAD_CHANNEL

82 E_PSL_FTELL_PIPE_CHANNEL

83 E_PSL_FTELL_BAD_CHANNEL

84 E_PSL_RESPONSE_NO_VALUE

85 E_PSL_RESPONSE_NO_CONSOLE

86 E_PSL_RESPONSE_TIMEOUT

87 E_PSL_SHARE_BAD_CHANNEL

88 E_PSL_SHARE_SAME_CHANNEL

89 E_PSL_CLOSE_BUSY_CHANNEL

90 E_PSL_BUSY_CHANNEL

91 E_PSL_UNBLOCKED_BY_CLOSE

92 E_PSL_FULL_DISCOVERY_BAD_APP

93 E_PSL_NO_SUCH_ID

94 E_PSL_SOCKET_BUSY

95 E_PSL_TIMEOUT

96 E_PSL_BAD_FUNCTION_PARAMETER

97 E_PSL_SNMP_NOT_SUPPORTED

98 E_PSL_SNMP_ALREADY_LISTENING

99 E_PSL_SNMP_NOT_LISTENING

100 E_PSL_SNMP_ERROR

101 E_PSL_BAD_OBJ

102 E_PSL_NOT_PARAM

Table A-1 PSL errno Values (Part 4 of 6)

Numeric Value Message
BMC Software, Inc., Confidential and Proprietary Information

A-4 PATROL Script Language Reference Manual Volume 1—PSL Essentials

103 E_PSL_NO_RTCELL

104 E_PSL_NOT_SUPPORTED

105 E_PSL_ANN_NO_HISTORY_RETENTION

106 E_PSL_REMOTE_QUERY_COMM_ERR

107 E_PSL_REMOTE_QUERY_CREATION

108 E_PSL_REMOTE_QUERY_CANNOT_START

109 E_PSL_REMOTE_OPEN_ERR

110 E_PSL_FAULT

111 E_PSL_BAD_DATE_STRING

112 E_PSL_BAD_TIMEZONE

113 E_PSL_CANNOT_DETERMINE_TIMEZONE

114 E_PSL_LOCK_DESTROYED

115 E_PSL_ANN_TOO_EARLY

116 E_PSL_ANN_SAVE_FAILED

117 E_PSL_ACL_FAILED

118 E_PSL_PCONFIG_FAILED

119 E_PSL_NO_ANNOTATION_DATA

120 E_PSL_BAD_CHART_COMMAND

121 E_PSL_ALLOC_FAILED

122 E_PSL_INTERNAL_ARG_ERROR

123 E_PSL_INTERNAL_PARSE_FAILED

124 E_PSL_INTERNAL_UNKNOWN_FUNCTION

125 E_PSL_INTERNAL_FUNCTION_FAILED

126 E_PSL_INTERNAL_TYPE_MISMATCH

127 E_PSL_INTERNAL_BAD_NAME

128 E_PSL_ALREADY_WAITING

129 E_PSL_ENABLED

130 E_PSL_DISABLED

131 E_PSL_BAD_METRIC_GROUP

Table A-1 PSL errno Values (Part 5 of 6)

Numeric Value Message
BMC Software, Inc., Confidential and Proprietary Information

errno Return Values A-5

132 E_PSL_BAD_METRIC

133 E_PSL_BAD_COMPUTATION

134 E_PSL_SET_LOCALE_FAILED

135 E_PSL_CODECVT_INVALID_MB

136 E_PSL_CODECVT_NO_CONV

137 E_PSL_CODECVT_SAME

138 E_PSL_RTE_FSEEK_RESTRICTED_FILEOPEN_MODE

139 E_PSL_SKS_BAD_ACCOUNT

140 E_PSL_SKS_INSTANCE_ERR

141 E_PSL_SKS_SET_ERR

142 E_PSL_SKS_GET_ERR

Table A-1 PSL errno Values (Part 6 of 6)

Numeric Value Message
BMC Software, Inc., Confidential and Proprietary Information

A-6 PATROL Script Language Reference Manual Volume 1—PSL Essentials

B

B
B

Built-in Agent Namespace Variables B

The built-in Agent namespace variables maintained by the PatrolServer
are presented here in table format. You can use these variables to
customize existing commands and parameters. The tables define:

Computer Class Built-in Variables .B-2
Application Class Built-in Variables .B-3
Application Instance Built-in Variables .B-4
Parameter Built-in Variables. .B-5

The Mode column in each table shows r- for read-only variables, and rw
for read-write variables.
BMC Software, Inc., Confidential and Proprietary Information

Built-in Agent Namespace Variables B-1

Computer Class Built-in Variables

Table B-1 Computer Class Built-in Variables (Part 1 of 2)

Mode Name Description

r- objectId Object ID

r- appType Application name (computer class)

r- sid Host name

r- name Host name

r- hostname Host name

r- ipAddress Host IP address

r- tcpPort TCP port to which PatrolServer is bound

r- patrolHome PATROL home directory

r- patrolVersion Version of the PatrolServer software

r- ruleState Status of the instance based on discovery information only

r- worstParam Name of “worst” parameter on this computer

r- worstParamState Status of “worst” parameter on this computer

r- status Overall status of this instance (“worst” of ruleState,
worstParamState and worstApplInstState)

r- globalParamsSuspended TRUE if global parameters have been suspended for this
computer, FALSE otherwise

r- execParams TRUE if parameters for this computer are allowed to be
executed, FALSE otherwise

r- agentPid PID of the PatrolServer process

r- agentLogPath Full path name of the PatrolServer's error log file

r- serverPid PID of the PatrolServer’s server process

r- serverLogPath Full path name of the server's error log file

r- totalErrors Total number of errors detected by the PatrolServer

r- allocErrors Number of memory allocation errors

r- forkErrors Number of process spawning errors

r- pipeErrors Number of pipe creation errors

r- internalErrors Number of miscellaneous internal errors

r- userErrors Number of errors in user-specified commands
BMC Software, Inc., Confidential and Proprietary Information

B-2 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Application Class Built-in Variables
s

r- executingProcs Number of currently executing sub-processes (parameters,
commands, and so on)

r- execsPerMin Average number of sub-processes started per minute

r- timeBtnExecs Average time (in seconds) between spawning of
sub-processes

r- time Current time as ASCII string (e.g., Thu May 07 02:44:01
1992)

Table B-2 Application Class Built-in Variables

Mode Name Description

r- . Symbol table for application

r- .. Symbol table for computer

r- name Application name

rw active TRUE if discovery for application is active, FALSE otherwise

r- lastDiscoveryTime Time (in seconds from Epoch) at which discovery of this
application was last done

r- username Application user name

r- propagateState TRUE if the state of this application is automatically
propagated to the computer

r- environment Environment variables

r- instances List of SIDs of instances of this application

r- numInstances Number of instances of this application

Table B-1 Computer Class Built-in Variables (Part 2 of 2)

Mode Name Description
BMC Software, Inc., Confidential and Proprietary Information

Built-in Agent Namespace Variables B-3

Application Instance Built-in Variables

Table B-3 Application Instance Built-in Variables (Part 1 of 2)

Mode Name Description

r- . Symbol table for instance

r- .. Symbol table for application

r- objectId Object ID

r- appType Application name

r- sid SID for instance

rw name Icon name/label for instance

r- username Application user name

rw environment Environment variables

rw home Home directory for instance

rw version Instance version (software)

r- ruleState Status of the instance based on discovery information only

r- worstParam Name of “worst” parameter on this instance

r- worstParamState Status of “worst” parameter on this instance

r- status Overall status of this instance (“worst” of ruleState and
worstParamState)

r- globalParamsSuspended TRUE if global parameters have been suspended for this
instance, FALSE otherwise

r- execParams TRUE if parameters for this instance are allowed to be
executed, FALSE otherwise

r- transition Time (in seconds from Epoch) at which instance entered
state transition, or zero if not in transition

r- procUser User names of processes belonging to this instance

r- procPid PIDs of processes belonging to this instance

r- procParentPid Parent PIDs of processes belonging to this instance

r- procName Names of processes belonging to this instance

r- procCommand Full commands of processes belonging to this instance

r- procSize Sizes (virtual) of processes belonging to this instance

r- procResidentSetSize Sizes (resident) of processes belonging to this instance
BMC Software, Inc., Confidential and Proprietary Information

B-4 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Parameter Built-in Variables

r- procStatus States of processes belonging to this instance

r- procPercentCpu CPU utilization for processes belonging to this instance

r- procCpuTime Cumulative CPU consumption for processes belonging to
this instance

r- parentInstance Path to the nested instance’s parent instance

Table B-4 Parameter Built-in Variables

Mode Name Description

r- . Symbol table for parameter

r- .. Symbol table for instance/computer

r- name Parameter name

rw active Parameter activity

rw status State of the parameter

r- execTime Time of next scheduled execution

rw interval Interval (in seconds) between executions

rw value Current value

r- alarmMin Minimum value of current alarm's range, or zero if no alarm
is active

r- alarmMax Maximum value of current alarm's range, or zero if no alarm
is active

r- alarmState State of current alarm, or “No alarm active” if no alarm is
active

Table B-3 Application Instance Built-in Variables (Part 2 of 2)

Mode Name Description
BMC Software, Inc., Confidential and Proprietary Information

Built-in Agent Namespace Variables B-5

BMC Software, Inc., Confidential and Proprietary Information

B-6 PATROL Script Language Reference Manual Volume 1—PSL Essentials

C

C
C

Additional PSL Tools C

This appendix describes additional PSL tools you can use when writing
PSL scripts. The additional PSL tools are

PSL Profiler Tool .C-2
How to Install the PSL Profiler .C-4
How to Start the PSL Profiler .C-4
PSL Profiler PSL Functions. .C-5
About the PSL Profile Viewer (ppv) ToolC-8
About the PSL Profiler API .C-8

PSL Optimizer Tool .C-10
Introduction to the PSL Optimizer. .C-10
How to Install the PSL Optimizer .C-10
How to Deactivate the PSL Optimizer. .C-11
About the PSL Optimizer. .C-11
Optimization Levels .C-11
Optimization Criteria .C-14
Command-Line Specified Options .C-16
BMC Software, Inc., Confidential and Proprietary Information

Additional PSL Tools C-1

PSL Profiler Tool

The PSL Profiler is a measurement component built into the PATROL
Agent to measure how much resources each PSL script consumes. This
allows the determination of which scripts have the largest usage cost and
provides information as to where the cost is distributed within the PSL
script.

The main PATROL Agent resource measured by the PSL Profiler is CPU
time. This is broken into user time and system time, to indicate that the
system calls may take some time in some of the PSL built-in functions.
The PSL Profiler does not explicitly measure other cost measures such as
the number of child processes, the amount of memory, PSL locks, global
channels, and so on. However, some of this information can be gathered
from the execution counts and the built-in function call counts. For
example, child processes can be measured reasonably accurately as the
number of calls to PSL system(), execute(), and popen()
functions.

The PSL Profiler tool is used to collect profiling information from PSL
processes. Primarily, the PSL Profiler records which PSL functions are
called, how often each PSL function is called, and the time spent in each
PSL function for each PSL process. All the profiling information that is
collected for a PSL process is stored internally until the PSL process
exits. When the PSL process does exit, the profiling information is
written to the binary file specified by the PSL_PROF_LOG environment
variable.

The PSL Profiler saves the profile data for PSL processes to the profile
file as they terminate. Profiler output is saved in the file specified by the
PSL_PROF_LOG environment variable. When the PATROL Agent is shut
down in an orderly fashion, the Profiler saves the profile data for those
PSL processes that have not been destroyed.

There are a number of interfaces to the PSL Profiler:

• PSL functions—The PSL Profiler can be dynamically enabled via
PSL and reports can be printed in PSL.
BMC Software, Inc., Confidential and Proprietary Information

C-2 PATROL Script Language Reference Manual Volume 1—PSL Essentials

• PSL Profiler Viewer (ppv) utility—This is an off-line reporting tool
that analyzes a profiling data file which the PATROL Agent can
generate during profiling.

• PSL Profiler API—The PSL Profiler API allows the PSL Profiler to
be controlled (started, stopped, etc.) and queried at run-time.

Supported Platforms

Operating Systems

• UNIX
• Windows
• OS/2
• VMS

PATROL Versions

PATROL 3.2 and later Agent

To Use the PSL Profiling Capability in PATROL v3.1

The list of PSL processes currently running in the Agent can be sampled
and used to generate a rough picture of the cost of each PSL process. Use
this tool as a sampling technique for PATROL v3.1 products in lieu of the
PSL Profiler offered in v3.2.

Resource Requirements

PSL Profiler requires no additional resources beyond those specified for
running the PATROL for Windows product.

When to Use the PSL Profiler

The primary purpose of the PATROL profiling tools in the KM
development environment is to aid in the KM performance tuning task.

Use the PSL Profiler to

• tune the CPU usage of a PSL script
BMC Software, Inc., Confidential and Proprietary Information

Additional PSL Tools C-3

• find the highest consuming PSL script
• tune the number of external processes

The Profiler tools can also be used as a PATROL Agent configuration or
deployment tool in production systems to determine which KMs and PSL
scripts are taking too many resources.

Limitations of the PSL Profiler

The main limitation of the PSL Profiler is that it does not go very deep
within each script to examine performance. For example, there is no
line-by-line report showing which lines are executed most frequently.
The analysis of built-in functions is useful but there is no similar analysis
of PSL user-defined functions. The PSL Profiler can be dynamically
enabled and disabled during Agent execution. Enabling the PSL Profiler
will turn on the measurement for the specified PSL scripts. Disabling the
Profiler will discard all measured data and return the Agent to the normal
non-profiling state.

The impact of turning on the PSL Profiler is a marginal degradation of
PSL execution performance. This results because each PSL timeslice
must also be added to measurement counters. However, this is mainly a
low in-memory cost. The largest costs are when the reports are
generated. Report generation occurs only when the data has been
collected.

How to Install the PSL Profiler

This tool is part of the PATROL product. No further setup is required
once PATROL has been installed.

How to Start the PSL Profiler

You can activate the PSL Profiler:

• using PSL functions
• starting the PATROL Agent with the -profiling option
BMC Software, Inc., Confidential and Proprietary Information

C-4 PATROL Script Language Reference Manual Volume 1—PSL Essentials

In all cases, the output report is of a similar format. The PSL Profiler
reports tell you which PSL scripts have the highest CPU usage and also
measure how much each built-in PSL function has used.

Scheduling frequency of the PSL processes affects the results since the
CPU usage timers are cumulative. However, since the number of
executions is also measured, the average cost per execution can also be
easily generated in reports.

Profiler output is saved in the file specified by the PSL_PROF_LOG
environment variable.

PSL Profiler PSL Functions

The following PSL functions support the PSL Profiler tool:

s

ProfDefaultOptions()

The default Profiler options are queried or changed by using the
ProfDefaultOptions() function, with the following format:

ProfDefaultOptions(options)

Name Description

ProfDefaultOptions() sets the default Profiler options to options

ProfGet() retrieves the profile of the process identified by
pid

ProfGetTotalCpu() retrieves the total real, user, and CPU time as
well as the percent of CPU usage

ProfOptions() sets the profiling options of the process
identified by pid to options

ProfReset() resets the profiling data for all processes

ProfTop() retrieves the profiles of the top_procs highest
CPU time processes
BMC Software, Inc., Confidential and Proprietary Information

Additional PSL Tools C-5

This function sets the default profiler options to options. If options is
omitted, then the current default options are returned. Changing the
default Profiler options does not affect the profiling options of existing
processes.

ProfGet()

The profiles of one or more PSL processes are retrieved by using the
ProfGet() function, with the following format:

ProfGet(pid,top_funcs)

This function retrieves the profile of the process identified by pid. If pid
is –1 or ““, then the profiles of all existing PSL processes are returned. If
top_funcs, which is a numeric value, is specified, then only top_funcs
highest CPU-time function calls are returned to the profile of each
process. Otherwise, all function call data available for each process is
returned.

ProfGetTotalCpu()

The total CPU usage statistics for the current interval (since profiling was
started or reset) are retrieved by the ProfGetTotalCpu() function,
with the following format:

ProfGetTotalCpu()

The ProfGetTotalCpu() function returns, in order, the real CPU time,
user CPU time, system CPU time, and CPU percent in the following
format:

2:25:52.275 0:01:07.998 0:00:14.200 0.94

Note
OS/2 does not support this function. The return values for this function
will always be zero on OS/2.
BMC Software, Inc., Confidential and Proprietary Information

C-6 PATROL Script Language Reference Manual Volume 1—PSL Essentials

ProfOptions()

The profiling options of existing processes are queried or changed by
using the ProfOptions() function, with the following format:

ProfOptions(pid,options)

This function sets the profiling options of the process identified by pid to
options. If pid is -1 or ““, then the profiling options of all existing
processes are changed to options. If options is omitted, then the current
profiling options of the process identified by pid are returned.

ProfReset()

The profiling data for all processes are reset by using the ProfReset()
function, with the following format:

ProfReset()

This function resets the profiling data of all processes and sets the
profilier’s reference point to the current time so the future
ProfGetTotalCpu() function call reflects the totals from the
ProfReset() function call.

ProfTop()

The profiles of the highest CPU time-consuming processes are retrieved
by using the ProfTop() function, with the following format:

ProfTop(top_procs, [top_funcs])

This function retrieves the profiles of the top_procs highest CPU-time
processes. If top_funcs is specified, then the top_funcs highest CPU-time
functions calls are returned in the profile of each process. Otherwise, all
function call data available for each process is returned.

Note
The top_procs and top_funcs variables are both numeric values.
BMC Software, Inc., Confidential and Proprietary Information

Additional PSL Tools C-7

About the PSL Profile Viewer (ppv) Tool

The PSL Profile Viewer tool (also known as the ppv utility) provides the
capability to view the PSL profiling information stored in a binary
profile.

To view the binary profile file after the Agent (or PSL stand-alone) has
terminated, use the ppv utility. This tool uses one argument, the name of
the profile file, and stores statistics for the PATROL Agent and each PSL
process that the Agent has executed. The Agent’s data includes:

• the number of PSL processes profiled
• the elapsed time of the Agent
• the cumulative CPU time of the PATROL Agent
• the average percent CPU load of the PATROL Agent

The PSL process data includes the number of executions and real and
CPU times used by each process, the number of calls, and a breakdown
of the real and CPU time used by each function that a process calls.

All of this information is sorted in descending order by the highest CPU
time and by the name in the event that two processes (or function calls)
have the same cumulative CPU time.

About the PSL Profiler API

The PSL Profiler API allows the PSL Profiler to be controlled (started,
stopped, etc.) and queried at run-time. Profiling is possible without
needing the -profiling option and without stopping the Agent.

Profiling behavior is controlled by assigning a process the sum of one or
more of the following options:

Value Description

0 no profiling

1 process-level profiling

2 function-level profiling
BMC Software, Inc., Confidential and Proprietary Information

C-8 PATROL Script Language Reference Manual Volume 1—PSL Essentials

When first created, a process is assigned the current default Profiler
options. The sum of the default Profiler options is 15 if the Agent is
started with the -profiling option (-p option for the PSL
stand-alone) or 0 otherwise.

Note
To stop profiling, shutdown the PATROL Agent to write the data to the
file.

4 cumulative

8 save at exit

Value Description
BMC Software, Inc., Confidential and Proprietary Information

Additional PSL Tools C-9

PSL Optimizer Tool

Introduction to the PSL Optimizer

The PATROL PSL Optimizer tool is a three-level, multi-pass,
intermediate code (quad) optimizer.

Supported Platforms

Operating Systems

• UNIX
• Windows
• OS/2
• VMS

PATROL Versions

• PATROL 3.2 only

Resource Requirements

The PSL Optimizer requires no additional resources beyond those
specified for running the PATROL product.

When to Use the PSL Optimizer

Use this tool to optimize your KM code.

How to Install the PSL Optimizer

This tool is part of the PATROL Agent. No further setup is required once
PATROL has been installed.
BMC Software, Inc., Confidential and Proprietary Information

C-10 PATROL Script Language Reference Manual Volume 1—PSL Essentials

How to Deactivate the PSL Optimizer

Since this tool is part of the PATROL product, there is no requirement to
deactivate the tool.

About the PSL Optimizer

When a PSL script is compiled, it is compiled down to an intermediate
code. The PATROL Optimizer transforms the intermediate code
generated by the PSL Compiler so that the code executes more efficiently
in the PSL interpreter.

Optimization Levels

You can specify the level of optimization by using the -O flag with the
PSL stand-alone compiler or with the PatrolAgent function. You can also
use the pragma keyword in PSL to set the optimization level for a
particular PSL script.

The supported levels of optimization are:

Level 1: Peephole Optimizations

Level 1 optimizations are ignorant of a program’s control flow and are
limited to the analysis of a program on an instruction by instruction
basis.

Level 1 optimizations include

Level Code Description

0 no optimization

1 peephole optimization (default)

2 local optimization

3 global optimization
BMC Software, Inc., Confidential and Proprietary Information

Additional PSL Tools C-11

• jump chain reduction
• useless jump removal
• redundant instruction removal
• parameter packing

Jump Chain Reduction

This optimization looks for unconditional jumps to one or more Control
Transfer Statement (CTS) instructions. The terminal CTS instruction is
then replicated onto all of the non-terminal CTS instructions.

Useless Jump Removal

This optimization looks for unconditional and conditional jumps to the
next instruction. The jump is then removed.

Redundant Instruction Removal

This optimization looks for redundant statements without side effects.
One of the redundant statements is then removed.

Parameter Packing

This optimization looks for adjacent parameter instructions and packs
them into a more efficient parameter instruction.

Level 2: Local Optimizations

Level 2 optimizations utilize a flowgraph to optimize the program one
basic block at a time. Code motion, addition, and removal are limited to a
basic block unit.

Level 2 optimizations include

• constant folding
• constant propagation
• global constant propagation
• definition removal
• string concatenation conversion
• parameter ordering
BMC Software, Inc., Confidential and Proprietary Information

C-12 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Constant Folding

Expressions whose arguments are known at optimization time are
evaluated. The result of the folded expression replaces the original
expression with an assignment operation.

Constant Propagation

The results of constant folding are tracked and propagated into other
expressions using the value. These values can then be folded into other
expressions.

Global Constant Propagation

The values of symbols used in subsequent basic blocks are seeded for
future Level 2 fold and propagate optimizations.

Definition Removal

Expressions defining symbols that are later defined, without first being
referenced, are removed. Expressions with side effects remove only the
assignment to the symbol.

String Concatenation Conversion

Chains of string concatenations are converted into a single and more
efficient call to the PSL join() function.

Parameter Ordering

Parameter statements with nested expressions are re-ordered so all
expression evaluation occurs before the first parameter statement and all
parameter statements immediately precede the call statement. This
exposes Level 1 parameter packing opportunities.

Level 3: Global Optimizations

Level 3 optimizations alter the flowgraph by adding, removing, and
re-locating basic blocks.
BMC Software, Inc., Confidential and Proprietary Information

Additional PSL Tools C-13

Level 3 optimizations include

• block chain reduction
• unreachable code removal
• loop tail logic injection
• orphan block inlining

Block Chain Reduction

One or more basic blocks that are entered from an unconditional jump
are copied to the jump point. The resultant basic block is then extended
to include the “copied” block.

Unreachable Code Removal

Code that can never be executed is removed.

Loop Tail Logic Injection

Loops with conditional heads and unconditional tails are converted so
that the condition evaluation takes place in the loop’s tail(s). This
decreases loop overhead by removing an unnecessary jump to the
condition block.

Orphan Block Inlining

Blocks that are entered exclusively via jumps are inlined (moved) into
the innermost loop that references this block.

Optimization Criteria

The PSL Optimizer decides at what level to optimize a program based on
the following criteria:

• requested level
• demanded level
• maximum level
BMC Software, Inc., Confidential and Proprietary Information

C-14 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Requested Level of Optimization

The requested level is implicitly defined based on the context of the call
to the PSL Compiler. For example, a PSL parameter script will request
Level 3 global optimization when it is compiled. A script submitted via
the %PSL command will request the default level (Level 1 peephole) of
optimization when it is compiled.

Presently, Level 3 global optimization is requested for all pre-discovery,
discovery, and parameter PSL scripts. The default Level 1 is used for all
other commands.

Demanded Level of Optimization

The demanded level is explicitly defined and takes precedence over the
requested level. The demanded level can be specified on the command
line or directly in the PSL program via the pragma statement.

For example, a parameter can demand Level 2 optimization (and thus
override the Level 3 request) by inserting the following pragma
statement in the program:

pragma “O2“;

Note
Note that the O in the O2 in the line above is an uppercase alphabetic
character and not a number zero.

Likewise, the optimization level can be specified system-wide via the
command line:

PatrolAgent -02

Note
Note that the 0 in the 02 in the line above is a numeric and not an alpha
capital letter O.
BMC Software, Inc., Confidential and Proprietary Information

Additional PSL Tools C-15

This will cause all PSL scripts to be optimized at Level 2 except for any
scripts containing a pragma statement requesting another level of
optimization.

Maximum Level of Optimization

The maximum level is explicitly defined and takes precedence over the
demanded level and the requested level. The maximum level restricts the
Optimizer tool from invoking higher levels. For example, if a parameter
specifies a maximum optimization level of 1, it will never get optimized
at Levels 2 or 3. A program specifying a maximum level can use a
pragma statement like this:

pragma -OM1;

Example
This program will be optimized at level 1 and
print the levels 1 and 2 results for the
program and its processes.
pragma “-01P2”

Likewise, the maximum level can be specified system-wide via the
command line. For example,

PatrolAgent -OM1

Specifying a maximum level of zero (0) turns off the PSL Optimizer tool.

Command-Line Specified Options

The PSL Optimizer tool can be controlled using the following methods:

• Via a command-line switch for the psl and PatrolAgent
commands. This affects scripts system wide.

• Via the pragma PSL statement. This affects only the script using the
pragma statement.
BMC Software, Inc., Confidential and Proprietary Information

C-16 PATROL Script Language Reference Manual Volume 1—PSL Essentials

The format is as follows:

-O # M# P#

Symbol Description

Specify the demanded optimization level. If no level
is specified, the requested optimization level,
defined implicitly based on the context of the PSL
script, will be used. Valid values are 0, 1, 2 and 3.

M# Specify the maximum optimization level. Valid
values are 0, 1, 2 and 3. The default level is 3.

P# Specify the level at which to print optimization
results (to stdout). Valid values are:
• 0 = Quiet, no results printed
• 1 = Optimization statistics results printed
• 2 = Execution results plus level 1 results
• 3 = Flow Graph program listing plus level 2

results
BMC Software, Inc., Confidential and Proprietary Information

Additional PSL Tools C-17

BMC Software, Inc., Confidential and Proprietary Information

C-18 PATROL Script Language Reference Manual Volume 1—PSL Essentials

Index
Index

Symbols
character 3-2
%DUMP 4-2
%DUMP CHANNELS 4-3
%DUMP LIBRARIES 4-4
%PSL-execute PSL statement 4-6
%PSLPS-list PSL processes 4-7
{} 3-2

A
ActiveX scripts 2-7
application class, built-in variables B-3
application discovery 1-9
application instance, built-in variables B-4
application instances 1-11
application objects 1-11
application variables 1-11
arithmetic operators 2-9
assignment operators 2-10

B
backslash rules 2-6
bitwise operators 2-11
BMC Software, Inc., Confidential and Proprietary Information
block chain reduction optimization C-14
built-in Agent namespace variables 1-13

for application class B-3
for application instance B-4
for computer B-2

C
case, significance of 2-3
collector parameter 1-10
comments in PSL 3-2
common coding errors 5-8
compiler warnings 5-12
compound statements 3-2
computer class

built-in Agent namespace variables B-2
constant folding optimization C-13
constant propagation optimization C-13
consumer parameter 1-10

D
data types, PSL 2-2
decrement operators 2-11
definition removal optimization C-13
diagnosing PSL errors 5-1
Index 1

differences from C 5-7
discovery script 1-9
do...until statement 3-4

E
efficiency 1-10
errno return codes 5-6
error checking, run-time 5-2
error diagnosing 5-1
errors

diagnosing 5-1
exit statement 3-6
exit_status system return code 5-7
export statement 3-7
expressions, PSL 2-9
external commands

%DUMP 4-2
%DUMP CHANNELS 4-3
%DUMP LIBRARIES 4-4
%PSL-execute PSL statement 4-6
%PSLPS-list PSL processes 4-7
psl-PSL compiler 4-8

F
foreach statement 3-11
function statement 3-13
functions

backward compatibility 3-19
entry point 3-17
limitations of user-defined 3-19
local variables 3-16
return statement 3-14
start of execution 3-18

G
global constant propagation optimization

C-13
global optimizations C-13

H
here document 2-6

I
if statement 3-21
incompatibilities with C 5-7
increment/decrement operators 2-11
intermediate code (quad) optimizer tool

C-10
interpreted language 1-2

J
jump chain reduction optimization C-12

L
last statement 3-23
Level 1 optimizations C-11
Level 1 peephole optimization C-11
Level 2 local optimizations C-12
Level 3 global optimization C-13
list values 2-8
local optimizations C-12
logical operators 2-11
loop tail login injection optimization C-14
lvalues 2-3
BMC Software, Inc., Confidential and Proprietary Information

2 PATROL Script Language Reference Manual Volume 1—PSL Essentials

N
name space, common 2-3
naming conventions, PSL 1-13
new-line character 2-6
next statement 3-24

O
operators, PSL 2-9
optimization 1-2
optimization levels C-11, C-12, C-13
orphan block inlining optimization C-14

P
parameter built-in Agent namespace

variables B-5
parameter ordering optimization C-13
parameter packing optimization C-12
PATROL Script Host, ActiveX 2-7
peephole optimization C-11
pitfalls, PSL 5-7
ppv tool C-3, C-8
ProfDefaultOptions() function C-5
ProfGet() function C-6
ProfGetTotalCpu() function C-6
Profiler API C-3
Profiler tool C-2
Profiler Viewer tool C-3
-profiling option C-4, C-8
ProfOptions() function C-7
ProfReset() function C-7
ProfTop() function C-7
PSL

common coding errors 5-8
compiler warnings 5-12
data types 2-2

error diagnosing 5-1
external commands 4-1
here document 2-6
incompatibilities with C 5-7
operators 2-9
pitfalls 5-7
run-time error messages 5-15
statements 3-2
style guidelines 1-13
tools

additional C-1
PSL Optimizer tool command line options

C-16
PSL Profile Viewer (ppv) Tool C-8
PSL Profiler API C-3
PSL Profiler functions C-2
PSL Profiler tool

description C-2
limitations C-4
with PATROL v3.1 C-3

PSL Profiler Viewer (ppv) tool C-3
PslDebug variable 5-2
psl-PSL compiler 4-8

Q
quad optimizer tool C-10

R
redundant instruction removal optimization

C-12
relational operators 2-12
relative address 1-12
requires statement 3-25
root directory 1-11
run-time error checking 5-2
run-time error messages 5-15
BMC Software, Inc., Confidential and Proprietary Information

Index 3

S
scalar 2-2
scripts, ActiveX 2-7
simple expressions 2-9
statement block 3-2
Statements

do...until 3-4
exit 3-6
export 3-7
foreach 3-11
function 3-13
if 3-21
last 3-23
next 3-24
requires 3-25
switch 3-28
while 3-33

string concatenation conversion optimization
C-13

string literals 2-5
string operators 2-13
strings

here document 2-6
string literals 2-5

switch statement 3-28

T
tab character 2-6

U
unreachable code removal optimization

C-14
useless jump removal optimization C-12
user commands 1-10
user-defined variables 1-13

V
variables

built-in 1-13, B-1
PslDebug 5-2
user-defined 1-13

W
while statement 3-33
BMC Software, Inc., Confidential and Proprietary Information

4 PATROL Script Language Reference Manual Volume 1—PSL Essentials

STOP!

IMPORTANT INFORMATION - DO NOT INSTALL THIS PRODUCT UNLESS YOU HAVE
READ ALL OF THE FOLLOWING MATERIAL

By clicking the YES or ACCEPT button below (when applicable), or by installing and using this Product or by having it
installed and used on your behalf, You are taking affirmative action to signify that You are entering into a legal agreement and
are agreeing to be bound by its terms, EVEN WITHOUT YOUR SIGNATURE. BMC is willing to license this Product to You ONLY
if You are willing to accept all of these terms. CAREFULLY READ THIS AGREEMENT. If You DO NOT AGREE with its terms, DO
NOT install or use this Product; press the NO or REJECT button below (when applicable) or promptly contact BMC or your
BMC reseller and your money will be refunded if by such time You have already purchased a full-use License.

SOFTWARE LICENSE AGREEMENT FOR BMC PRODUCTS

SCOPE. This is a legally binding Software License Agreement (“License”) between You (either an individual or an entity) and BMC
pertaining to the original computer files (including all computer programs and data stored in such files) contained in the enclosed Media
(as defined below) or made accessible to You for electronic delivery, if as a prerequisite to such accessibility You are required to
indicate your acceptance of the terms of this License, and all whole or partial copies thereof, including modified copies and portions
merged into other programs (collectively, the “Software”). “Documentation” means the related hard-copy or electronically
reproducible technical documents furnished in association with the Software, “Media” means the original BMC-supplied physical
materials (if any) containing the Software and/or Documentation, “Product” means collectively the Media, Software, and
Documentation, and all Product updates subsequently provided to You, and “You” means the owner or lessee of the hardware on
which the Software is installed and/or used. “BMC” means BMC Software Distribution, Inc. unless You are located in one of the
following regions, in which case “BMC” refers to the following indicated BMC Software, Inc. subsidiary: (i) Europe, Middle East or Africa
--BMC Software Distribution, B.V., (ii) Asia/Pacific -- BMC Software Asia Pacific Pte Ltd., (iii) Brazil -- BMC Software do Brazil, or (iv)
Japan -- BMC Software K.K. If You enter into a separate, written software license agreement signed by both You and BMC or
your authorized BMC reseller granting to you the rights to install and use this Product, then the terms of that separate, signed
agreement will apply and this License is void.

FULL-USE LICENSE. Subject to these terms and payment of the applicable license fees, BMC grants You this non-exclusive License
to install and use one copy of the Software for your internal use on the number(s) and type(s) of servers or workstations for which You
have paid or agreed to pay to BMC or your BMC reseller the appropriate license fee. If your license fee entitles You only to a License
having a limited term, then the duration of this License is limited to that term; otherwise this License is perpetual, subject to the
termination provisions below.

TRIAL LICENSE. If You have not paid or agreed to pay to BMC or your BMC Reseller the appropriate license fees for a full use license,
then, NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENSE: (i) this License consists of a
non-exclusive evaluation license (“Trial License”) to use the Product for a limited time (“Trial Period”) only for evaluation; (ii) during the
Trial Period, You may not use the Software for development, commercial, production, database management or other purposes than
those expressly permitted in clause (i) immediately above; and (iii) your use of the Product is on an AS IS basis, and BMC, ITS
RESELLERS AND LICENSORS GRANT NO WARRANTIES OR CONDITIONS (INCLUDING IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE) TO YOU AND ACCEPT NO LIABILITY WHATSOEVER
RESULTING FROM THE USE OF THIS PRODUCT UNDER THIS TRIAL LICENSE. If You use this Product for other than evaluation
purposes or wish to continue using it after the Trial Period, you must purchase a full-use license. When the Trial Period ends, your right
to use this Product automatically expires, though in certain cases You may be able to extend the term of the Trial Period by request.
Contact BMC or your BMC reseller for details.

TERM AND TERMINATION. This License takes effect on the first to occur of the date of shipment or accessibility to You for electronic
delivery, as applicable (the “Product Effective Date”). You may terminate this License at any time for any reason by written notice to
BMC or your BMC reseller. This License and your right to use the Product will terminate automatically with or without notice by BMC if
You fail to comply with any material term of this License. Upon termination, You must erase or destroy all components of the Product
including all copies of the Software, and stop using or accessing the Software. Provisions concerning Title and Copyright, Restrictions
(or Restricted Rights, if You are a U.S. Government entity) or limiting BMC’s liability or responsibility shall survive any such termination.

TITLE AND COPYRIGHT; RESTRICTIONS. All title and copyrights in and to the Product, including but not limited to all modifications
thereto, are owned by BMC and/or its affiliates and licensors, and are protected by both United States copyright law and applicable
international copyright treaties. You will not claim or assert title to or ownership of the Product. To the extent expressly permitted by
applicable law or treaty notwithstanding this limitation, You may copy the Software only for backup or archival purposes, or as an
essential step in utilizing the Software, but for no other purpose. You will not remove or alter any copyright or proprietary notice from

copies of the Product. You acknowledge that the Product contains valuable trade secrets of BMC and/or its affiliates and licensors.
Except in accordance with the terms of this License, You agree (a) not to decompile, disassemble, reverse engineer or otherwise
attempt to derive the Software’s source code from object code except to the extent expressly permitted by applicable law or treaty
despite this limitation; (b) not to sell, rent, lease, license, sublicense, display, modify, time share, outsource or otherwise transfer the
Product to, or permit the use of this Product by, any third party; and (c) to use reasonable care and protection to prevent the
unauthorized use, copying, publication or dissemination of the Product and BMC confidential information learned from your use of the
Product. You will not export or re-export any Product without both the written consent of BMC and the appropriate U.S. and/ or
foreign government license(s) or license exception(s). Any programs, utilities, modules or other software or documentation
created, developed, modified or enhanced by or for You using this Product shall likewise be subject to these restrictions. BMC has the
right to obtain injunctive relief against any actual or threatened violation of these restrictions, in addition to any other available
remedies. Additional restrictions may apply to certain files, programs or data supplied by third parties and embedded in the Product;
consult the Product installation instructions or Release Notes for details.

LIMITED WARRANTY AND CONDITION. If You have purchased a Full-Use License, BMC warrants that (i) the Media will be, under
normal use, free from physical defects, and (ii) for a period of ninety (90) days from the Product Effective Date, the Product will perform
in substantial accordance with the operating specifications contained in the Documentation that is most current at the Product Effective
Date. BMC’s entire liability and your exclusive remedy under this provision will be for BMC to use reasonable best efforts to remedy
defects covered by this warranty and condition within a reasonable period of time or, at BMC’s option, either to replace the defective
Product or to refund the amount paid by You to license the use of the Product. BMC and its suppliers do not warrant that the Product
will satisfy your requirements, that the operation of the Product will be uninterrupted or error free, or that all software defects can be
corrected. This warranty and condition shall not apply if: (i) the Product is not used in accordance with BMC’s instructions, (ii) a Product
defect has been caused by any of your or a third party’s malfunctioning equipment, (iii) any other cause within your control causes the
Product to malfunction, or (iv) You have made modifications to the Product not expressly authorized in writing by BMC. No employee,
agent or representative of BMC has authority to bind BMC to any oral representations, warranties or conditions concerning the Product.
THIS WARRANTY AND CONDITION IS IN LIEU OF ALL OTHER WARRANTIES AND CONDITIONS. THERE ARE NO OTHER
EXPRESS OR IMPLIED WARRANTIES OR CONDITIONS, INCLUDING THOSE OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, REGARDING THIS LICENSE OR ANY PRODUCT LICENSED HEREUNDER. THIS PARAGRAPH
SHALL NOT APPLY TO A TRIAL LICENSE. Additional support and maintenance may be available for an additional charge; contact
BMC or your BMC reseller for details.

LIMITATION OF LIABILITY. Except as stated in the next succeeding paragraph, BMC’s and your BMC reseller’s total liability for all
damages in connection with this License is limited to the price paid for the License. IN NO EVENT SHALL BMC BE LIABLE FOR ANY
CONSEQUENTIAL, SPECIAL, INCIDENTAL, PUNITIVE OR INDIRECT DAMAGES OF ANY KIND ARISING OUT OF THE USE OF
THIS PRODUCT (SUCH AS LOSS OF PROFITS, GOODWILL, BUSINESS, DATA OR COMPUTER TIME, OR THE COSTS OF
RECREATING LOST DATA), EVEN IF BMC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some jurisdictions
do not permit the limitation of consequential damages so the above limitation may not apply.

INDEMNIFICATION FOR INFRINGEMENT. BMC will defend or settle, at its own expense, any claim against You by a third party
asserting that your use of the Product within the scope of this License violates such third party’s patent, copyright, trademark, trade
secret or other proprietary rights, and will indemnify You against any damages finally awarded against You arising out of such claim.
However, You must promptly notify BMC in writing after first receiving notice of any such claim, and BMC will have sole control of the
defense of any action and all negotiations for its settlement or compromise, with your reasonable assistance. BMC will not be liable for
any costs or expenditures incurred by You without BMC’s prior written consent. If an order is obtained against your use of the Product
by reason of any claimed infringement, or if in BMC’s opinion the Product is likely to become the subject of such a claim, BMC will at its
option and expense either (i) procure for You the right to continue using the product, or (ii) modify or replace the Product with a
compatible, functionally equivalent, non-infringing Product, or (iii) if neither (i) nor (ii) is practicable, issue to You a pro-rata refund of
your paid license fee(s) proportionate to the number of months remaining in the 36 month period following the Product Effective Date.
This paragraph sets forth your only remedies and the total liability to You of BMC, its resellers and licensors arising out of such claims.

GENERAL. This License is the entire understanding between You and BMC concerning this License and may be modified only in a
mutually signed writing between You and BMC. If any part of it is invalid or unenforceable, that part will be construed, limited, modified,
or, severed so as to eliminate its invalidity or unenforceability. This License will be governed by and interpreted under the laws of the
jurisdiction named below, without regard to conflicts of law principles, depending on which BMC Software, Inc. subsidiary is the party to
this License: (i) BMC Software Distribution, Inc. - the State of Texas, U.S.A., (ii) BMC Software Distribution, B.V. - The Netherlands, (iii)
BMC Software Asia Pacific Pte Ltd. -- Singapore (iv) BMC Software do Brazil -- Brazil, or (v) BMC Software K.K. -- Japan. Any person
who accepts or signs changes to the terms of this License promises that they have read and understood these terms, that they have
the authority to accept on your behalf and legally obligate You to this License. Under local law and treaties, the restrictions and
limitations of this License may not apply to You; You may have other rights and remedies, and be subject to other restrictions and
limitations.

U.S. GOVERNMENT RESTRICTED RIGHTS. UNPUBLISHED -- RIGHTS RESERVED UNDER THE COPYRIGHT LAWS OF THE
UNITED STATES. Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in FAR Section 52.227-14
Alt. III (g)(3), FAR Section 52.227-19, DFARS 252.227-7014 (b) or DFARS 227.7202, as amended from time to time.
Contractor/Manufacturer is BMC Software, Inc., 2101 CityWest Blvd., Houston, TX 77042-2827, USA. Any contract notices should be
sent to this address.

Notes

�
�����
�
�����
�
�����
�
�����

17597

	About This Manual
	Who Should Read This Book
	How This Manual Is Organized
	Related Documentation
	Online and Printed Books
	Online Help
	Release Notes

	Conventions
	Mouse Controls

	PATROL Script Language (PSL) Overview
	What Is PSL
	Interpreted PSL Scripts
	Compiled PSL Binary Files
	Optimization
	Diagnostics

	PSL Built-in Functions
	Locking Functions for Concurrency Control
	Set Functions for PSL Lists
	PSL Mathematical Functions

	PSL Libraries
	PSL Process Synchronization
	PSL Shared Global Channels
	Requirement for Shared Global Channels in PSL
	Implementation of PSL Shared Global Channels
	Effect of PSL Shared Global Channel Mechanisms

	How to Use PSL in PATROL
	Complex Application Discovery
	Advanced User Commands
	Efficient Monitoring Parameters

	How PSL Relates to PATROL Architecture
	Using Built-in or User-Defined Object Variables
	PSL Naming Conventions

	PSL Data Types and Operators
	PSL Data Types and Objects
	Numeric Constants
	PSL Variables
	Default Initialization of PSL Variables
	PSL Predefined Constants
	PSL String Literals
	PSL Here Documents
	ActiveX Scripts
	PSL Lists
	PSL Simple Statements

	PSL Operators
	Arithmetic Operators
	Assignment Operators
	Increment/Decrement Operators
	Bitwise Operators
	Logical Operators
	Relational Operators
	Shift Operators
	String Operators
	Ternary Operator
	PSL Operator Precedence and Associativity

	PSL Statements
	Introduction
	PSL Compound Statements
	do...until
	Format
	Parameters
	Description
	Example

	exit
	Format
	Parameters
	Description

	export
	Format
	Parameters
	Description

	for
	Format
	Parameters
	Description
	Example

	foreach
	Format
	Parameters
	Description
	Examples

	function
	Format
	Parameters
	Description
	return Statement
	Functions with Variable Length Argument Lists
	Defining Local Variables
	Entry Point Function
	Start of Execution Without an Entry Point Function
	Backward Compatibility with Earlier PSL Versions
	Limitations of User-Defined Functions

	if
	Format
	Parameters
	Description
	Examples

	last
	Format
	Parameters
	Description

	next
	Format
	Parameters
	Description

	requires
	Format
	Parameter
	Description

	switch
	Format
	Parameters
	Description

	while
	Format
	Parameters
	Description
	Example

	PSL External Commands
	%DUMP—List Specific Information
	Format
	Parameters
	Description

	%DUMP CHANNELS—List PSL Global Channels
	Format
	Parameters
	Description

	%DUMP LIBRARIES—List Loaded PSL Libraries
	Format
	Parameters
	Description
	Example

	%PSL—Execute a PSL Statement
	Format
	Parameter
	Description

	%PSLPS—List Current PSL Processes
	Format
	Parameters
	Description

	psl—PSL Compiler Command
	Format
	Parameters
	Description

	Diagnosing PSL Program Errors
	PslDebug—Run-Time Error Checking Variable
	errno—Error Return Code Variable
	exit_status—System Return Code Variable
	Incompatibilities with the C Programming Language
	Operators && and ||
	Prefix and Postfix Operators ++ and --
	Break and Continue Statements

	Common PSL Coding Errors
	Character Strings Interpreted as Numbers
	Floating Point Numbers Interpreted as Character Strings
	Character Strings Interpreted as Variable Names
	PSL Functions That Do Not Modify Their Arguments
	Functions That Do Not Write to the Console Window

	PSL Compiler Warnings
	Built-in Function Run-Time Error Messages

	Internationalized PSL Scripts
	Introduction
	Locale and Codeset
	Locale Categories
	set_locale()
	CTYPE Locale Category
	MESSAGES Locale Category
	CODECVT Locale Category
	TIME Locale Category
	Multiple-Byte Characters

	PSL International Functions
	ID-Based Messaging Functions

	Other PSL Functions
	Command Execution Functions
	Input and Output Functions
	File Handling Functions
	String Functions
	Set Functions
	Date and Time

	Compatibility with Noninternationalized PATROL Agents
	Example Code: Verify the Version of the PATROL Agent
	Example Code: Conditionally Use an International Function

	errno Return Values
	Built-in Agent Namespace Variables
	Computer Class Built-in Variables
	Application Class Built-in Variables
	Application Instance Built-in Variables
	Parameter Built-in Variables

	Additional PSL Tools
	PSL Profiler Tool
	How to Install the PSL Profiler
	How to Start the PSL Profiler
	PSL Profiler PSL Functions
	About the PSL Profile Viewer (ppv) Tool
	About the PSL Profiler API

	PSL Optimizer Tool
	Introduction to the PSL Optimizer
	How to Install the PSL Optimizer
	How to Deactivate the PSL Optimizer
	About the PSL Optimizer
	Optimization Levels
	Optimization Criteria
	Command-Line Specified Options

	Notes

